Linear Quadratic Control with
Reference Input

[latexpage]The last post was our introduction to the Linear
Quadratic Regulator (LQR). We saw there that as we started
with initial conditions or introduced a disturbance the LQR
will drive the states to zero. In the simulations we saw the
graphic of the copter converge on the zero state: zero roll,
pitch, yaw, and respective rates all to zero.

The, “Control Law” (feedback gain K) was obtained through a
solution of the matrix Ricatti equation buried in Matlab.
We'll dig into that math at some other time.

This same solution is relevant for the, “tracking” problem or
servo case: when we desire the plant to be controlled to a
particular set of non-zero state values.

Basic Idea

We can think of it as the reverse of our last simulated cases
where we started with non-zero state initial conditions (some
angles for roll, pitch, and yaw) and observed the platform
converge on the zero-state attitude.

Think of this new problem as starting with zero initial
conditions (a level quadcopter) and desiring the attitude,
“step response” to a non-zero input.

This is a bit artificial for the quadcopter because a non-zero
attitude will mean thrust in a particular lateral direction
which we are ignoring at present. Our controller design will
still be relevant, as this is the attitude control loop.
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Ultimate Goal

Later we’ll introduce an outer position control loop that
supplies the reference inputs to the attitude controller: the
reference input that is the topic here. In flight it will not
be a set value but a continually changing attitude reference
input based on the outer position control loop’s desire to
move the platform by altering the attitude and the resultant
thrust vector.

Before we can illustrate how an outer position controller will
command attitude to this inner attitude controller we need to
understand how to introduce the reference for roll, pitch, and
yaw.

The respective rates are states also, but our goal is to
regulate these to zero as the attitude tracks the body angle
input reference. Our reference vector will supply zero for the
rate states.

Theory

Feedback Control of Dynamic Systems by Franklin, Paul, and
Emami-Naeini introduces the topic via the material below. The
following page copies are from a 1994 edition of their
textbook.

7.3.2 Introducing the Reference Input with Full
State Feedback

Thus far, the control has been given by Eq. (7.58), or u = —Kx. In order to
study the transient response of the pole-placement designs to input cor:nmands,
it is necessary to introduce the reference input into the system. An obvious way
to do, this is to change the control to u = —Kx + r. However, the system will
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now almost surely have a nonzero steady-state error to a step input. The way

* to correct this problem is to compute the steady-state values of the state and
" the control input that will result in zero output error and then force them to

take these values. If the desired final values of the state and the control input
are x,, and u,,, then the new control formula should be

u=u, — Kx —x,), (7.76)

so that when x = x,, (no error), u = u,,. To pick the correct final values, we
must solve the equations so that the system will have zero steady-state error

to any constant input. The system dillferential equations are the standard ones:
7
x = Fx + Gu, (7.77a)

y=Hx +Ju. (7.77b)

In the steady state, Eqgs. (7.77a) and (7.77b) reduce to the pair
0 = Fx,, + Gu,, (7.78a)
Yo = Hx, + Ju,. (7.78b)

We want to solve for the values for which y,, = r_, for any value of r_. To do
this we make x,, = N, r,, and u,,= Nr.. With these substitutions we can write
Egs. (7.78) as a matrix equation; the common factor of r cancels out to give
the equation for the gains:
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This equation can be solved for N, and N, to get
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With these vales we finally have the basis for introducing the reference input
so as to get zero steady-state error to a step input:

u=N,r-Kx—-N,r 3
= —Kx + (N, + KNr. (7.80)

The coefficient of r in parentheses is a constant that can be computed
beforehand. We give it the symbol N, so

u= —Kx + Nr. (7.81)

The block diagram of the system is shown in Fig. 7.9.
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FIGURE 7.9 . _ ‘ _
Block diagram for introducing the reference input with full-state feedback: (a) with state

and control gains; (b) with a single composite gain
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Quadrotor Implementation

We are dealing with more states and a multi-input, multi-
output (MIMO) problem. The equation to solve from the
reference above is shown here with bold matrix elements
representing matrices themselves.

Our ‘A’ and ‘C’ Matrices are 6x6. The ‘B’ and ‘D’ Matrices are
6x4. This results in the matrix needing an inverse being
12x10, which is non-invertible. On page 510 Stengel writes we
can employ the right pseudoinverse in this case.

\begin{equation}
\begin{bmatrix}

\mathbf{N {x}} \\
\mathbf{N {u}} \\
\end{bmatrix}
\begin{bmatrix}

\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D} \\
\end{bmatrix}~{-1}


https://www.amazon.com/Optimal-Control-Estimation-Dover-Mathematics-ebook/dp/B00A3M0ZNW

\begin{bmatrix}
\mathbf{0} \\
\mathbf{1} \\
\end{bmatrix}
\end{equation}

We can then solve for the reference gains. The resulting N, is
6x6. The resulting N, is 6x4. We now have the matrices we need
to operate on our state reference.

N, and N, are simplified into a composite gain in the second
block diagram according to the reference textbook above:

\begin{equation}
\bar{N}=N u+KN_ x
\end{equation}
u X X
Nh‘
ref + B + / C y
K
A
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We're now ready to see how the quadrotor LQ controller will
track a reference input. The controller gain matrix K is from
our LQR solution, so it’s the same controller.



Matlab Simulation

This Matlab script is a generalized version of the script in
the last post covering the LQR simulation. In this script you
will see the reference gain N 1is established and applied to a
reference input. Yaw-axis sinusoidal reference tracking 1is
illustrated in the following video generated by running the
script.

You’'ll need the same three additional files from the last post
(see the matlab script section near the end).

Download the script, find yourself a
Matlab seat, and explore!

Quadrotor Reference Input Tracking: a yaw-axis sinusoidal
reference

Conclusion

We’'ve covered how to solve for the reference input gain matrix
and modified our LQR Matlab simulation script accordingly. The
simple simulation shared in the video above indicates we’'re
stable and generally tracking the yaw sinusoid.

There’s more to do in this area: examine disturbance
rejection, tracking performance, and general analysis of our
LQR controller. Through this process we’'d apply some
performance assessment metrics and iteratively adjust our cost
function weights.

We're not yet to a real design and iteration process yet.
We're still building the tools and the understanding of how
this MIMO Linear Quadratic quadcopter math works.

Happy Learning!
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