
Maximum Thrust vs. Battery
Voltage
[latexpage]

In a previous post we got the Ardupilot simulator stable
running the linear-quadratic attitude controller, but we had a
hack in-place for normalizing our body torque commands from
Newton-meters to -1 to +1 for input to the Ardupilot motor
sub-system.

Purpose
This post uses a test stand to measure maximum available
thrust over a range of supply (battery) voltages in order to
gain a normalizing constant we need for the output commands of
our linear quadratic controller. With normalized commands we
drive -1 to +1 commands into native Ardupilot motor code which
in-turn drives PWM outputs to electronic speed controllers
(ESCs).

Equipment
After all the modelling and equation solving for the motor-
prop assembly in previous posts I’ve been wanting to take some
measurements. I found a reasonably priced test stand from Tyto
Robotics: their model 1520. I purchased the add-on optical
speed sensor. All-in with shipping was near $200.

Here’s the 1520 on my bench with the AIR2216/880Kv motor and
T1045 prop that comes with the Hexsoon EDU-450 kit. On my
setup here you can see a green LED on the RPM sensor board as
well as the reflective tape on the motor rotor.

https://www.mtwallets.com/maximum-thrust-vs-battery-voltage/
https://www.mtwallets.com/maximum-thrust-vs-battery-voltage/
https://www.mtwallets.com/ardupilot-linear-quadratic-attitude-controller/
https://www.tytorobotics.com/pages/series-1520
https://irlock.com/products/450-drone-frame-shipping-mid-december?variant=31375144910899

Problem
In the Linear-Quadratic controller implementation within the
Ardupilot Attitude Controller we’re calculating roll, pitch,
yaw command outputs as Torques. Challenge is, Ardupilot motor
code desires normalized roll, pitch, and yaw commands scaled
-1 to +1.

Focusing on a single axis, say roll, once we have a roll
torque to command on each iteration we need to cram a
normalized roll (-1 to +1) into the Ardupilot motors object.
From there it will result in PWM output to electronic speed
controllers (ESCs) to drive the motors.

Roll torque is differential thrust from a cross-body pair of
propellers multiplied by the arm length. If we divide our
controllers command torque by arm length we get this
differential thrust command but…

How to normalize it for the Ardupilot motors and PWM stack of
code?

We need a maximum thrust
with added twist that it’s voltage-dependent as
battery voltage drops during flight.

Solution
Characterize the motor-prop assembly maximum thrust as a
function of battery voltage. Call it, Thrustmax.

Given Thrustmax and also run-time battery voltage sampled in
real-time, scale Thrustmax down to a Thrustavailable.

Then at run-time we’ll normalize that differential thrust for
roll and pitch with a divide-by Thrustavailable (first clamping
the differential command to +/- Thrustavailable). This will give
us a normalized -1 to +1 roll and pitch to command the

resident motors object in Ardupilot.

Yaw is different as it’s driven by propeller drag force and
resultant moment induced about the craft’s center. We’ll look
at that later.

Max thrust derating by
battery voltage
The first plot below illustrates what to expect for thrust as
our Lithium Polymer (LiPo) battery voltage drops during
flight. A single LiPo charged cell is nominally 3.7 volts to
4.2V. We’ll likely use a ‘4S’ configuration (4 cells in
series) for nearly 15 Volts at max charge.

I don’t yet know what a low voltage cuttoff will be. I read
maybe 3.2V per cell which means our minimum operating voltage
might be say 10-12V. In any case I tested with my bench supply
as follows in order to produce data seen here.

Procedure
Set bench supply at 15V.1.

This is source voltage to the ESC driving the
motor on the test stand shown above.

Step ESC from 1000 to 2100 with intervals of 100.2.
This results in a 1-2ms pulse to the ESC in 100
microsecond steps.

Hold each step.3.
Sample motor speed and torque mid-step.4.

When the step’s steady-state is established.
On pause after last step.5.

lower battery voltage.1.
Jump to step 2 above.6.

Measured Thrust over ESC range by
Battery Voltage
We’ll get our data off the 2-D plot below. These 3-axis plots
illustrate the test runs and reveal the relationship between
battery voltage, ESC command, and measured motor speed and
torque.

plot: Thrust output by ESC command input over
range of Battery voltage.

Thrust derates with voltage because the maximum RPM drops with
voltage. You can see this in the following plot where we’re
plotting against measured RPM instead of command. We don’t
actually drive thrust, we drive motor speed, which in turn
provides thrust proportional to RPM squared as described in an
earlier post.

In the perspective view here you can see it’s actually RPM

https://www.mtwallets.com/quadrotor-propeller-speed-control-commanding-4-props-to-stabilize-the-platform/

that is dropping with lower voltage, and consequently thrust.
Thrust it our output of interest though.

plot: Thrust output vs RPM output from
ESC command over range of Battery
voltage.

What we care about is the maximum thrust possible as a
function of battery voltage. Note from the plot below how no-
load battery voltage droops up to max thrust (RPM) for each
step. Let’s take our voltage difference from the loaded
maximum drive output for the first and last step. We’ll take
the thrust difference and get our slope. It’s nicely linear.

\begin{equation}
 \Delta V = 13.75 – 8.25 = 5.5V
\end{equation}

\begin{equation}
 \Delta Thrust = 10.5 – 4.5 = 6N
\end{equation}

\begin{equation}
 m = \dfrac {\Delta Thrust}{\Delta V} =\dfrac{6N}{5.5V}\approx
1\dfrac{N}{V}
\end{equation}

Plot: Maximum Thrust at Battery Voltage

Run-time equation for our normalizing
value: Thrustavailable

The equation here will replace the normalization constants
described in an earlier diagram. Our interest then was to get
stable with the simulator, so we hacked-in a scheme. Here
we’ll have an acurate divisor for the -1 to +1 motors input
range.

\begin{equation}

https://www.mtwallets.com/ardupilot-linear-quadratic-attitude-controller/#lqflowchart

 Thrust_{available} = Thrust_{cal} + m\cdot(V_{batt,current} –
V_{batt,cal})
\end{equation}

Conclusion
We’ll confirm these results with a battery stack instead of a
bench supply to finalize our numbers, but it looks like we
have a tidy linear derating to apply here. We’ll calibrate
somewhere near a fully-charged battery pack voltage and store
these two parameters for Ardupilot:

Thrustcal (Newtons)
ThrustVcal (Volts)
ThrustSlope (Newtons per Volt)

This is unity above but we’ll store it anyway

The above run-time equation and application of these
parameters will cover cases where run-time voltage is higher
than the calibration voltage.

