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In  the last quadcopter post we clarified the load torque of
the propeller applied through the gearbox to the motor shaft.
We won’t even have a gearbox but the terms in the equation
needed clarification. We haven’t yet covered the main point of
the propeller: LIFT! A propeller blade is just a spinning wing
at each cross-sectional location.

The  propeller  force  described  in  the  NASA  diagram  in  an
earlier post summarizes the propeller-induced thrust force but
it doesn’t tell us anything about the fluid mechanics around
the prop blades.

Wings and Lift
Motivation
My MIT Fluid Mechanics professor Ain Sonin would not be happy
with me if I didn’t remember a very compelling demonstration
he performed to illustrate, “streamline curvature” as the lift
producer. The link on his name honors his passing in 2010. He
died at a young age of 72. I vividly recall his interesting
lectures, impeccable sketches, approximation techniques, and
his evident love of teaching. Thinking of what I learned from
him, and what I should have better absorbed then, I want to
cover lift here.

Propeller as Airfoil
Previously, we considered the torque load as the drag on the
motor. It makes sense that if we spin a propeller shaped like
the example below the blunt nose and general form of the
propeller requires some torque to spin it through the air.

https://www.mtwallets.com/propeller-blade-lift/
http://www.mtwallets.com/revisit-the-motorgearboxpropeller-model/
http://www.mtwallets.com/quadrotor-propeller-speed-control-commanding-4-props-to-stabilize-the-platform/
http://news.mit.edu/2010/obit-sonin


This is the drag you feel on your hand when you stick it out
of your car window.

Let’s stick with the hand-out-the-window example. Whether we
are actual kids or big kids, we all sometimes put our hand out
the car window with our palm down. Then we tip our hand just a
bit back and it feels like it wants to go up. Is this how a
wing or a propeller (a spinning wing) creates sustained lift?
No!

A titled hand can rise with the force of air outside the car
window but we cannot sustain flight (level-flight) or produce
along-axis force from spinning a propeller unless the blades
produce, “streamline curvature”! This is something hard to do
with your hand out the car window unless you have a very
unique shape to your hand and the angles are just right.

You are likely not producing, “lift” with your hand. you are
just feeling the drag on an angle and that wants to push your
hand up-and-back. If it weren’t attached to your arm it would
just flip backwards. If an airplane wing attempted to climb by
tipping itself backwards the plane would flip back like a
mattress on top of a minivan going down the highway.



It’s  about,  “Streamline
curvature”  over  the  top
surface
So what is really going on? In Professor Sonin’s class we were
introduced to the fundamentals of Euler’s Equation, and its
application in cylindrical coordinates along a, “streamline”.
Streamlines  are  the  blue  lines  flowing  around  the  cross-
section of a wing below. Bernoulli’s equation is what we learn
to apply in basic fluid mechanics. It can be integrated from
Euler’s  equation.  It’s  handy  for  very  many  engineering
problems,  but  Euler’s  gives  us  a  deeper  level  of
understanding.

If you look at the cross-sections of the propeller above you
can see they look like a bunch of wing cross-sections. The
propeller is just a spinning wing. At any moment in time any
of  those  propeller  cross-sections  above  has  streamlines
flowing  overand  under  similar  to  the  simple  wing  diagram
below. As it spins, part of the torque supplied by the motor
goes into forcing these streamlines to curve around the blade.
It is the nature of this curvature that gives us this, “lift”
force, which we call thrust for the propeller.

For a wing, the, “weight” in the diagram is the weight of the
entire plane, so the wings must produce lift to counter-act
that weight, and extra lift to accelerate that weight upwards:



to climb. When our propeller spins, we want it to pull a plane
forward or a helicopter up (quad-copter in our case). A prop-
driven airplane creates lift at the propellers to produce
flight speed necessary to produce vertical lift by the wings!
The  prop,  pulls  the  plane  forward  with,  “lift”  from  the
propellers and the plane stays aloft through, “lift” at the
wings. the same principle is applied in two directions!

Our quadcopter will hover when the total lift from the four
propellers  matches  the  total  weight.  It  will  accelerate
upwards or laterally when the total lift exceeds the total
weight. The force we get out of a wing and a propeller is due
to  something  you  can  see  in  the  graphic  above:  the
“streamlines”  on  the  top  (B)   (the  top  surface  of  our
quadrotor propellers) have more curvature than the streamlines
on the bottom (C).

Euler’s Equation
The  James  A.  Fat  textbook  below  was  in  paper  draft  for
Professor Sonin’s course at MIT 25 years ago now. Preparing
for this post motivated me to (re)learn this material, so I
just bought a bound copy of Fay’s book for my shelf.

Recommended Reading

We’ll gloss over considerable detail but fill a couple of
gaps  in  the  derivations  that  get  us  to,  “streamline
coordinates”.  Otherwise,  this  post  is  just  organizing
references in hopes of creating a useful guide on this topic
of lift as a result of, “streamline curvature”.

I can’t improve the theory relative to these expert sources.
I cannot come close to the genius of Euler and the father-son
Bernoulli team! I hope I can clarify it for we mere mortals.

https://www.amazon.com/Introduction-Fluid-Mechanics-James-Fay/dp/0262061651?SubscriptionId=AKIAJCI3DJTKR6N4LR2A&tag=wpbooklistid-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0262061651


Euler’s Equations
Euler’s Equations for inviscid flow will reveal what causes
the lift once we get it into the right form. Inviscid flow is
ideal, simplified flow, assumed to slip past the wing with no
surface interaction (no shear, so no boundary layer, eddies, 
turbulence)…only the shape of the wing affects the flow, not
the surface characteristics.

The Equations will reveal where the $V^2$ for the propeller
speed-to-thrust relationship comes from. We glossed over this
topic in the post with the NASA diagram where we saw the
simplified equation with the $V^2$ term.

In  the  last  post  we  resolved  some  confusion  around  the
motor+gearbox+propeller model for load on the motor. We cover
here the entire point of spinning the propeller: lift from
the  blades  or  aggregate  thrust  along  the  axis  of  the
propeller.

The following PDF extracts key pages from Fay’s book (my old
draft copy) that lead us to, “Euler’s Equation in Streamline
Coordinates”. It includes a few pages of Bernoulli equation
derivation. It is integrated from Euler’s equation along a
streamline. It is a frequently applied formula.

The typically overlooked perpendicular-to-streamline (normal)
Euler equation tells us about lift from an airfoil!

James A. Fay: Euler's Equation

Example Application
This tutorial by the late Professor Sonin is excellent. I
enjoy his neat sketches and remember them well, as I took
notes in his class and attempted to match his detail and
neatness.

http://www.mtwallets.com/quadrotor-propeller-speed-control-commanding-4-props-to-stabilize-the-platform/
http://www.mtwallets.com/revisit-the-motorgearboxpropeller-model/
https://www.mtwallets.com/wp-content/uploads/2018/05/FayEulers.pdf


Sonin: StreamLine Equations of Motion

It’s  not  easy  to  digest  the  mathematical  symbols,
multivariable calculus, and terminology unless one has an
excellent memory of their studies or practices these topics
regularly. We’ll fill in some gaps below.

Cylindrical Coordinates
Although it might look daunting on its own, let’s accept
Euler’s  equation  in  cartesian  (XYZ)  coordinates.  Then  in
Fay’s and Sonin’s material above we see we need cylindrical-
streamline coordinates to get the equations of motion into
some form that will enlighten us on this lift force we so
desire.

Step-by-Step Derivation
The key to deriving cylindrical coordinates is to start by
representing the unit vectors relative to a Cartesian system.

https://www.mtwallets.com/wp-content/uploads/2018/05/MIT2_25F13_EquationMotion.pdf


Starting Point: relating (x,y) unit vectors (i,j) to polar
unit vectors.

We start with radial and angular unit vectors in an X-Y
plane, and we know Z in the Cartesian system is the same as Z
in Cylindrical, so from the above diagram…

\begin{equation}
i_r = cos(\theta(t))i + sin(\theta(t))j
\end{equation}
\begin{equation}
i_{\theta} = -sin(\theta(t))i + cos(\theta(t))j
\end{equation}
\begin{equation}
i_z = i_z
\end{equation}

A  big  difference  between  cylindrical  coordinates  and



Cartesian  coordinates  is  the  rotation  of  the  ‘r’  and
‘$\theta$’  axes  in  time,  as  our,  “fluid  particle”  moves
in $\theta$. Hence showing $\theta$ as a function of time in
the above equation.

We need derivatives of the unit vectors, and here’s what they
are:

\begin{equation}
\dot{i_r} = (-sin(\theta(t))i + cos(\theta(t))j)\dot\theta
\end{equation}

Look  at  the  trig  in  parenthesis.  It’s  our  term  for
$i_{\theta}$  above  so…

\begin{equation}
\dot{i_r} = \dot\theta i_\theta
\end{equation}

And

\begin{equation}
\dot{i_\theta}  =  (-cos(\theta(t))i  -
sin(\theta(t))j)\dot\theta
\end{equation}

Again  we  see  a  familiar  expression  from  above  so  this
simplifies  to…

\begin{equation}
\dot{i_\theta} = -\dot\theta i_r
\end{equation}

It is these moving axes that give us what look like extra
terms in the cylindrical equations of motion. We get to them
simply by taking derivatives of position and velocity.



We  start  with  the  position  of  a  particle  in  cylindrical
coordinates.

\begin{equation}
P=r\cdot i_r + z\cdot i_z
\end{equation}

By chain rule, we differentiate position to velocity as…

\begin{equation}
V=\frac{dP}{dt} = \dot r\cdot i_r + r\cdot \dot i_r + \dot z
\cdot i_z + z\cdot \dot i_z
\end{equation}

But we have terms for the derivatives of the unit vectors
from above, and $\dot i_z=0$ so velocity simplifies to…

\begin{equation}
V=\dot r\cdot i_r + r\dot\theta i_\theta + \dot z \cdot i_z
\end{equation}

Then we differentiate Velocity to get acceleration, again by
the chain rule…

\begin{equation}
a = \frac{dV}{dt}=\ddot r\cdot i_r + \dot r\cdot \dot i_r +
\dot r\dot \theta i_\theta + r\ddot \theta i_\theta + r\dot
\theta \dot i_\theta + \ddot z \cdot i_z + z\dot \cdot \dot
i_z
\end{equation}

and we again replace those unit vector derivative terms and
$\dot i_z=0$ to get, with a bit of rearrangement…

\begin{equation}



a  =  \frac{dV}{dt}=(\ddot  r  –  r\dot  \theta^2)\cdot  i_r  +
(2\dot r \dot \theta + r\ddot \theta) \cdot i_\theta + \ddot
z \cdot i_z
\end{equation}

The $2\dot r \dot \theta$ is the, “Coriolis” acceleration
term  and  the  $r\dot  \theta^2$  is  the  “centrifugal”
acceleration term for a particle. They’re nothing more than a
manifestation of the rotating unit vector $i_\theta$, which
we can see by following the derivation above from cartesian
to polar.

Streamline Coordinates
These are just a slight twist on Cylindrical coordinates. We
relate cylindrical coordinates to streamline coordinates as
follows…

$i_n=-i_r$    The perpendicular-to-streamline or, “normal” to
flow unit vector.

$i_s=i_\theta$          The along-path unit vector, tangent
to streamline unit vector.

$i_b=i_z$          By right-hand-rule, normal to the above
two unit vectors: The, “up” axis of a cylindrical system.
Out-of-page axis here. No fluid dynamics along this axis.

The derivative relationships are

\begin{align*}
\frac{\delta}{\delta n} = -\frac{\delta}{\delta r} \\
\frac{\delta}{\delta s} = \frac{\delta}{r\delta \theta}
\end{align*}

That last denominator might look confusing but it’s just as
simple  as  spanning  a  distance  $ds$  with  angular  change
$d\theta$ operating on a radius $r$.



If you now go back to the Fay PDF and accept Euler’s Equation
in Cartesian coordinates on page 90-91 in the PDF above you
can use the steps above to get confident with the cylindrical
acceleration representation, also on page 90. From there you
use the unit vector reltionships to adjust the cylindrical
representation to the streamline representation and you get
to Fay’s page 105 here below.

https://www.mtwallets.com/wp-content/uploads/2018/05/FayEulers.pdf


Understanding,  “lift”  from



Streamline Coordinates
The key equation for us is

\begin{equation}
\frac{\delta p}{\delta n} = -\rho\frac{V(n)^2}{R(n)}
\end{equation}

V and R being likely functions of n, integrating to estimate
a pressure difference would be non-trivial. Sonin’s paper
gives us a chance to solve the n-direction equation with
models for Velocity and streamline radius as a function of n.
See the paper to attempt this derivation for flow over a
simple hill.

Fay and Sonin state that this is not a practical method for
calculating  a  lift  force.  It  is  over-simplified,  and  we
seldom have representations for V and R as a function of n
over a range of s-vectors tangent to the flow over a wing. If
we did, we’d still need to integrate them. However, this
treatment tunes us into the physics of the problem. Our goal
here is physical understanding, even if exact solutions elude
us.

The approximation below from some 1995 Sonin lecture notes
shows us what we need to know to appreciate why our prop-
speed-squared ($\omega^2$) is our lift producer.

http://www.mtwallets.com/wp-content/uploads/2018/05/MIT2_25F13_EquationMotion.pdf


Lift lecture notes

Understanding  Approximations  for
Lift
The n-direction equation tells us what we need to know to
understand  the  lift  generated  by  airfoils  (thrust  from
propellers:  spinning  airfoils).  As  Sonin’s  paper  above
states, “The n-direction equation states that when there is
flow and the streamlines curve, the sum $p+\rho gz$ (which is
constant  when  the  fluid  is  static)  increases  in  the  n-

http://www.mtwallets.com/wp-content/uploads/2018/05/MIT2_25F13_EquationMotion.pdf


direction, that is, as one moves away from the local center
of curvature.”

If we imagine integrating from the wing’s surface to far
above the wing the streamlines way out at our approximated
infinity would have a very large radius while the airspeed is
$V_\infty$.

If we just assume airspeed is $V_\infty$ everywhere (a crude
approximation because we are speeding it up over the wing)
but let the streamline radius get larger from top-surface
radius R as we move away from the wing then we can estimate a
low pressure on the top of the wing proportional to $\rho
v_\infty^2$ as indicated in the lecture notes above.

Remember  that  if  our  propeller  is  spinning  with  angular
velocity $\omega$. At any point along the propeller where we
could take a cross-section to sketch an airfoil diagram the
“V” is just the propeller rotational rate times the radius
from the propeller axis to the location of our cross-section.

\begin{equation}
V_{cross-section} = \omega_{prop}\cdot r_{cross-section}
\end{equation}

At this particular propeller cross-section, we could estimate
the free-stream velocity-squared as

\begin{equation}
V_\infty^2  =  V_{cross-section}^2  =  (\omega_{prop}\cdot
r_{cross-section})^2  =  \omega_{prop}^2  \cdot  r_{cross-
section}^2
\end{equation}

There’s our propeller $\omega^2$ term!

We  now  see  how  propeller  rotational  speed  squared



($\omega^2$)  is  the  variable  responsible  for,  the  “lift”
generated  by  a  propeller  blade.  It  is  proportional  to  a
simplified, assumed freestream velocity $V^2$ at any point
along the blade where we take a cross-section as above. This
is a highly simplified model, but it gets us to the essence
of a propeller as an airfoil.

Observe this on your next flight
Next time you land or take off in an airplane observe the
flaps that extend down from the leading edge and back from
the rear of the wings. They create a shorter wing curvature
radius and a larger wing surface. This increases lift.

It is required because the plane is going much slower at
take-off  and  landing  than  when  cruising  so  the  pressure
difference across the same wing would be less at low speed.

So,  the  modifiable  airfoil  extends  the  flaps,  creates  a
larger surface over which the pressure difference acts, and
adds more curvature to increase the pressure difference at
low airspeed. This occurs at the expense of drag, however.
Given that it is only needed at low speeds, the flaps are
retracted for cruising, where $ V_infty$ is higher, so we
don’t need the curvature and extra area the flaps provide.

There remains that $\rho$ term for air density, and we know
it is higher in the troposphere down near the ground than up
at 30,000 feet and higher. We’re going to ignore this because
our quadrotor is going to operate near the ground. Planes are
more sensitive to “stall” (failure of the lift from wings) at
high  altitudes  due  to  the  rarefied  (low-density)  air.
Airspeed and angle-of-attack are critical factors up there.



Conclusion
We now know that when our quad-rotor main controller asks our
4 motors for more-or-less speed many times per second it is
the speed-squared ($\omega^2$) that gives us lift!

I hope the references above and any gap-filling explanations
help convey the, “lift” phenomenon!


