
Quadrotor Build: Hardware,
Software, and Tools
I’ve been making a book report out of the many interesting
aspects revealed by a simple hobby drone. We’ve covered
electro-mechanics of motors and propellers, fluid mechanics
around propellers, simplified, “classical” single-input,
single-output (SISO) axis control design and multi-input, and
multi-output (MIMO) linear quadratic regulator (LQR) concepts
to this point.

The background on the LQR gets down to the Calculus of
Variations, solving the matrix Ricatti equation, and other
topics that deserve many deep-dives, but if I go that path I
might run out of air! It’s time to pull together a platform
and a set of tools to use in proving our design ideas to date.

I have not yet covered a companion to the controller design:
the state estimator. That’s going to be a Kalman filter that
blends gyroscope, accelerometer, GPS, compass, and a barometer
to estimate orientation and position of our platform. We’re
going to circle back on this because I’m going to be starting
with a flight controller that has a considerable amount of
sensor and software support built-in. I’ll likely start with
the state estimators available, and take these as feedback to
code modifications I’ll make to implement the MIMO paper
design.

It’s time to get a platform and a test stand up-and-running!
We’ll prove some of our ideas, and chase new concepts as we
go! Let’s Build!

https://www.mtwallets.com/quadrotor-build-hardware-software-and-tools/
https://www.mtwallets.com/quadrotor-build-hardware-software-and-tools/
https://www.mtwallets.com/revisit-the-motorgearboxpropeller-model/?preview_id=348&preview_nonce=a852aa5317&preview=true&_thumbnail_id=349
https://www.mtwallets.com/propeller-blade-lift/?preview_id=402&preview_nonce=6ef3466420&preview=true&_thumbnail_id=441
https://www.mtwallets.com/propeller-blade-lift/?preview_id=402&preview_nonce=6ef3466420&preview=true&_thumbnail_id=441
https://www.mtwallets.com/quadrotor-roll-pitch-axis-lead-compensation-pid/?preview_id=726&preview_nonce=43fa6fe572&preview=true&_thumbnail_id=727
https://www.mtwallets.com/quadrotor-roll-pitch-axis-lead-compensation-pid/?preview_id=726&preview_nonce=43fa6fe572&preview=true&_thumbnail_id=727
https://www.mtwallets.com/linear-quadratic-control-with-reference-input/?preview_id=999&preview_nonce=33ea26e8cc&preview=true&_thumbnail_id=1062

Test System Requirements
The goal is to take paper designs and realize them in
hardware, make adjustments to the designs based on testing,
and observe our analytical approach results in flight. To do
this we need hardware, software, and tools.

A former colleague of mine is a member of the Ardupilot team.
Ardupilot is an open-source flight controller stack and
encompasses a range of mission planning, simulation, tools and
techniques. We’ll be using Ardupilot and related tools.

Flight Controller Hardware
Pixhawk2 (Cube Black) is a well-supported platform by
Ardupilot. The “cube” is the insert to the breakout module
with various connector interfaces. The entire module is less
than 4″ long by 2″ wide. This will mount within our copter
frame. At the time of this writing Pixhawk4 is available.

The, “Pixhawk” is generally the interface module for a, “cube”
(orange below) that contains the inertial and other sensors
package together with the microprocessor. The module supports
cable connectors to various sensor, media, and communications
peripherals.

https://ardupilot.org/

Pixhawk2 platform with the Cube Black Flight Controller

Flight Controller Software
Ardupilot, “Copter” is our code platform starting point. I
chose to go native Linux for my development environment as I
have a laptop running Ubuntu. The Ardupilot tool set-up
instructions cover Mac and Windows, but I went the straight
Linux route. In my experience it’s easiest that way for
projects like this, as the Windows environment tools can be a
bit of a pain requiring VMs and such. I didn’t study Ardupilot
Windows set-up in-detail so maybe it’s not a problem. In any
case, just know that in what follows I’ll be giving you the
Linux tool suite details.

Ground Station

https://ardupilot.org/copter/

Mission Planner
OK I lied, I’m using my Windows machine to run
MissionPlanner from Ardupilot. Once we get set-up we’re able
to use this tool to hook directly to our cube above via USB or
telemetry radio. It fairly short-order we get to a point where
we’re loading our own builds and able to see live sensor data
in Mission Planner from the above hardware sitting on our
bench.

Telemetry
When you first get going on the Ardupilot build-load cycle you
can use a USB cable from your development machine to the Cube.
Soon after, either for convenience on the bench or definitely
when you need to fly you’ll need a radio link.

900MHz APM Radio Kit
I chose the 900MHz radios below (approved in US, most other
places you’ll need to go 450Mhz). They’re plug-and-play
between “Telemetry 1” connector on the PixHawk module above
and a USB serial port on the Mission Planner PC. I’m able to
connect at 57600 Baud with these radios (set 57600 on the PC
side and it will just, work. If 115200 works for you that’s
great).

https://ardupilot.org/planner/
https://www.amazon.com/FPVKing-Telemetry-Transmit-Pixhawk-Control/dp/B085NXH3N4/ref=sxts_sxwds-bia-wc-drs1_0?cv_ct_cx=FPVKing&dchild=1&keywords=FPVKing&pd_rd_i=B085NXH3N4&pd_rd_r=146d62b7-8f3d-4b1c-887a-ce4dc8909e81&pd_rd_w=pOQib&pd_rd_wg=Ngzyl&pf_rd_p=c33e4373-edb9-47f9-a7e6-5d3d6a7a4ad0&pf_rd_r=XCFE7S5W66HPYC8SADZA&psc=1&qid=1606360192&sr=1-1-5e875a02-02b1-4426-9916-8a5c26cd5a14

I had to hack the cables that came with the radios I bought
because the connector does not match the mating connector on
the PixHawk. I used the pinout description for the PixHawk2
above and this APM radio reference pinout below to figure how
to wire my 4-wire radio interface to a hacked cable into the
PixHawk. This board here has nothing to do with our design. I
just used this picture for the, “Radio Tel” description.

APM Radio Pinout
My hack worked. I Recommend you find a radio that has the
proper cable end for a PixHawk2. There are many APM2.6 and
higher Telemetry Radio options available through Amazon or
other outlets. I didn’t notice the connector issue until I
received my radios, so dig a little and you can avoid my hack.

 Quadrotor Platform
I picked a platform well-built for the PixHawk2, the EDU-450
Drone Kit. I purchased it here. It includes the motor
electronic speed controllers (ESCs), 880 Kv motors.

https://irlock.com/products/450-drone-frame-shipping-mid-december

EDU-450 Drone Kit

Simulation Environment

Ardupilot SITL
The Arudupilot codebase includes a software in-the-loop (SITL)
simulation environment. This permits the flight controller
outputs to actuate a software model of a quadcopter, which
then feeds-back sensor inputs to the flight controller
software. Implementation of the physics model and simulation
can be accomplished a number of ways. There appear to be a
handful of 3D graphics rendering simulation environments.

Real Flight and FightGear
RealFlight and FlightGear appear to offer quality 3D graphical
simulation. This looks good for presentation-quality
simulation. I followed the Ardupilot SITL guide to get
FlightGear going, but I’m more comfortable with Matlab for
coding details of our quadcopter mechanical model, introducing
disturbances and other aspects that will test the robustness
of our designs.

I’m less interested in the graphics of the simulation than the
performance details so I’ll be using the Matlab simulation
environment through Ardupilot SITL.

Matlab
Ardupilot SITLs JSON simulation option permits SITL to output
data to Mathsoft’s Matlab or Simulink. Consider a modest
investment in Mathsoft’s home-use license if you’re interested
in this approach. Specifically, I’ll be using SITL’s Matlab
option. Follow the link to a quality demonstration video.

This is the basic idea:

SITL runs the control loop on the flight controller
simulation machine

https://ardupilot.org/dev/docs/sitl-with-realflight.html
https://www.flightgear.org/
https://ardupilot.org/dev/docs/sitl-with-MATLAB.html
https://ardupilot.org/dev/docs/MATLAB-Simulation.html

SITL connects to a Matlab instance on same or other
computer via specified IP
The Fligth Controller output’s platform state
information like altitude as well as roto command
outputs via the JSON payload.
The Matlab server processes these data through a
mechanical model of the platform.

The rotor commands through this model result in
updates to roll, pitch, yaw, and altitude.

These modeled state outputs from the simulated, “real
platform” feed back to SITL via the JSON response to the
flight controller.
The Flight Controller processes these changes as sensor
inputs.

This process repeats at a sampling rate. In this manner we can
modify and test our real-time control code.

We can also change our physics model. Perhaps we degrade
performance of a motor or propeller, introduce wind, or other
disturbances. This, “real world” situational simulation will
be done through modifications and enhancements of the Matlab
code used to model an actual platform.

We will then be able to test the robustness of the controller
code and make enhancements as needed. We’ll iterate
considerably in this environment before we attempt to fly our
design.

Stationary Test Stand
I’ll be adding an entirely new Ardupilot attitude controller
to implement the Linear Quadratic methods. I’ll do a lot of
work on the bench with software simulators. Then I’ll graduate
to real hardware, but to prevent crashing around and to permit
controlled experiment analysis of the attitude control methods
I’ll want a stationary test stand.

A company called MINDS-i education markets a gimbal rig
demonstrated in the following video. This is exactly what I
need, but this would be both too small for my rig and also too
expensive for me, especially because I can build one in my
shop!

I’ll do a separate post covering the construction of my gimbal
test stand. For now, the MINDS-i demo video illustrates the 3
rotational degrees of freedom (roll, pitch, yaw) it will
allow. It prevents the 3 translational (X,Y,Z) degrees of
freedom that would crash it all over the shop as I work to
refine the control schemes!

 What Next?
Upcoming posts will jump around between Ardupilot coding of
the Linear Quadratic attitude controller, test stand build,
bench software-only simulations, and any topics the
implantation phase floats to the surface.

We’re finally going to get busy building and realizing the
math and the methods!

https://mindsieducation.com/
https://mindsieducation.com/collections/drones/products/uav-drone-gimbal-rig

