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It’s been fun to mess with the motor-propeller differential
equation and linearization in an post. However, when I got
into looking-up some rough parameter estimates and performing
dimensional analysis (seeing if the units worked-out right for
me in the equations) I ran into some problems.

I  realized  I  was  not  only  needing  numbers,  but  I  wasn’t
comfortable with the units either! This means no controller
design until we get a better understanding of the, “plant”
(the thing we want to control: the propeller speed via the
motor and gearbox if any).

Backup and learn more…
The  picture  for  this  post  shows  a  Mr.  Fred  Ernest  Weick
(1899-1993). I learned of him as I dug into some details
relating  to  this  post.  I  got  stuck  trying  to  understand
parameters  in  the  motor+gearbox+propeller  equation  in  my
earlier post.

Interesting History along the way
Eventually I encountered a book by Mr. Wieck, and learned he
was quite a force in the world of aviation. I found a PDF
online of his 1926 book shown here. Mr. Weick did a lot of
work on propellers and designed some aircraft. Safe civilian
aircraft design appears to have been one of his motivations. I
didn’t so much study his materials as get interested in his
history. It is enjoyable to learn about aviation history.
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Returning  to  our
Motor+Gearbox+Propeller Equation
I derived this equation earlier to match what Bouabdallah
presents in his paper (see his equation 14). I went step-by
step to illustrate his result.

$\frac{d\omega}{dt} = A\omega + Bu +C$

Where…

$A = -(\frac{K_m^2}{RJ} + \frac{2d\omega_0}{\eta r^3J})$

$B=\frac{K_m}{RJ}$

$C=\frac{d\omega_0^2}{\eta r^3J}$

What about all the terms in A,B, and C?

I reworked the derivation many, many times after looking at
more references. The biggest hang-up for me was the $r^3$
term in the equations. ‘r’ is the gearbox ratio. I could not
figure out how it came to be cubed in these equations!

The Hang-Up
I was stumped by a small section of my primary reference
paper for this project. In my earlier post, I was happy to go
through the linearization and get the same answer as the
paper  for  the  A,  B,  and  C  terms,  but  I  didn’t  really
understand one part of it: the propeller load on the motor
through the gearbox.

Below is what I had to go on: steps 11-14 (on the left) in
the paper together with the term descriptions to the right.
The one step that reads, “By introducing the propeller and
the gearbox models…” is what challenged my understanding.
This is where $\tau_d$ in equation 12 becomes $\frac{d}{\eta
r^3J_t}\omega_0^2$ in equation 13. I did not understand how
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this leap was made.



Understanding  of  the  propeller  load
terms…

The $d\cdot\omega_0^2$ part tells us that the propeller
puts a load on the motor proportional to the square of
the prop rotational speed.

This is consistent with the last post where the
NASA  equations  had  squared  airspeed  difference
for total force out of the prop. It makes sense
that we have a squared rotational term here for
torque.

“Drag factor”, ‘d’
Implies  the  drag  of  the  air  resisting  the
rotation of a propeller, but where can we find
this?

How did the moment of inertia go from $J$ to $J_t$?
When  using  motors  with  shafts,  gears,  and,
“loads” we want to, “refer” all of the downstream
complications to the motor shaft in one, “lumped”
parameter so that our problem looks like a motor
spinning a disk.

We, “lump” all the complications into an
equivalent  moment  of  inertia
$J_{equivalent}$  

This  is  what  $J_t$  represents,  but
how  to  arrive  at  it  through  the
gearbox?

Lumped inertia term aside, a main hang-up was the cubed
gear ratio in the denominator.

Typically we apply gear ratios as a fractional
step-up in torque and down in rotational speed or
vice-versa.

To see the gear ratio cubed as $r^3$ is
confusing.
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The Eye-opener

Reading another paper helps make sense of the r3 term. The
paper below uses $K_g$ instead of ‘r’, so we’ll stick with
the paper’s notation for a bit. My confusion resulted from
not systematically applying the gearbox relationship from the
motor to the propeller for the load model:

$\omega_{gm}=K_g\cdot\omega_{gl}$

$\tau_{gl}=K_g\cdot\tau_{gm}$

$\tau_{gm}=\frac{1}{K_g}\tau_{gl}$ tells us that the torque
the motor sees is equal to the load torque at the propeller
divided by the gear ratio (from the above gearbox equation).

This is the, “motor load” $\tau_d$ term in equation (12) from
our paper above, so here we see one gear ratio term in the
denominator.

Now, on the propeller-side of the gearbox we have a simple
relationship for torque as a function of propeller speed
squared:

$\tau_{gl}=d\cdot\omega_{gl}^2$

But we also know that…

$\omega_{gl}=\frac{\omega_{gm}}{K_g}$

So it all simplifies to…

$\tau_{d}  =  \tau_{gm}  =
\frac{1}{K_g}\cdot\tau_{gl}=\frac{1}{K_g}\cdot{d}\cdot\omega_
{gl}^2  =  \frac{d}{K_g}\cdot(\frac{\omega_{gm}}{K_g})^2  =
\frac{d\cdot\omega_{gm}^2}{K_g^3}$

$\tau_{d} = \frac{d\cdot\omega_{gm}^2}{K_g^3}$



Unstuck!
The $K_g^3$ term is our $r^3$ term! When we work this back
through the equations we’ll get the A, B, and C terms the
same as the Bouabdallah paper.

Here’s the paper that got me thinking correctly. This is an
example of one to use when you’re stuck: just look at more
and more source material until somebody’s treatment of a
subject  offers  a  different  twist  or  maybe  includes  an
additional step, diagram, or anything that helps you see it
clearly.

lab2_rotary_dynamics

Total moment of inertia as seen at the
motor shaft
Let’s focus on line (3) in the PDF above so we can determine
what our moment of inertia will be, referred to the motor
shaft.

$=\frac{J_l}{K_g}{\dot{\omega}}_{gl}$

 is simply replacing the $\tau_{gl}$ propeller-side torque
with the

$J\frac{d^2\theta}{dt}$

definition of torque (the F=ma for rotations about an axis).

$=\frac{J_l}{K_g^2}{\dot{\omega}}_{gm}$

after we use the gearbox relationships above and replace the
load-side  $\dot{\omega}_{gl}$   acceleration  term  with  the
motor-side equivalent through the gearbox.
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That fractional term is the propeller load inertia as the
motor, “sees” it on the motor side of the gearbox. We’ve
referred it directly to the motor shaft. The total inertial
load on the motor is then just the sum of the motor’s and
this load inertia mapped back to the motor shaft.

$J_{total}=J_m + \frac{J_l}{K_g^2}$

is then the inertia of the motor and the load referred to the
motor shaft. In the case of the load, it is mapped-back to
the motor shaft through the gearbox via the denominator term.

End Result of this exercise
My confusion over the $r^3$ term turned-out to be a blessing.
It forced more time (re)working the electro-mechanical motor
equations.  This  makes  us  much  more  confident  in  all  the
parameters and a better working knowledge of the derivation
of the final differential equation and it’s terms:

$\frac{d\omega}{dt} = A\omega + Bu + C$

The, ‘d’ term in the propeller load
equation
The trick with the, ‘d’ term is it needs to multiply an
$\omega^2$ term to produce a torque.

You can find this term in “Modelling if the ETH Helicopter
Laboratory Process” by Magnus Gafvert. It appears to employ
comparable motors and propellers for a small helicopter test
stand. Here’s Gafvert’s D term…

“Aerodynamic  torque  for  rotor  R:  $D  =  2.91\times10^{-7}
\frac{Nms^2}{rad^2}$  (page 9, Gafvert) for what looks like a
comparable hobby-sized propeller lab set-up. We can at least
get  started  with  this  order-of-magnitude  estimate.  Those
units  will  give  us  a  torque  (Nm)  when  we  multiply
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by $\omega_0^2$ (nominal propeller speed around linearization
point).

Gafvert references Mr. Weick in his paper, which is what
motivated the engineering history diversion above.

Conclusion
This post has been an exercise in overcoming confusion, at
least  for  me.  It  was  a  re-work  of  our  motor-propeller
equations with a deeper dive into the parameters of that
equation.


