
Simulation Methods: Double
Integrator Example
In the last post I focused on placing the lead zero for the
roll and pitch axes based on the limit imposed by a second
double-pole our plant introduces via the motor-propeller, ‘A’
term. I neglected to calculate the proportional gain required
for unity-gain crossover at the frequency of maximum phase
margin. I also did not design the yaw-axis controller. The
first short video completes these steps from last time. The
rest of this post will cover some simulation tools and
techniques we’ll be using.

Simulation tools and
techniques
In the video you can see in the last post I mention the,
“satellite attitude” control problem you can find in nearly
all control system textbooks. This is basically the same,
“plant” model as our roll, pitch, and yaw axes. However, by
stripping away our extra poles and parameter values we can
first make sense of the simulation tools and methods before
applying the tools to our problem.

Satellite Attitude Control: classic
double-integrator plant
stabilization
Is space absent gravity or any impeding forces lateral thrust
a moment-arms distance from the mass center on opposite of a

https://www.mtwallets.com/simulation-methods-double-integrator-example/
https://www.mtwallets.com/simulation-methods-double-integrator-example/
http://www.mtwallets.com/quadrotor-roll-pitch-axis-lead-compensation-pid/

body is a, “couple”. It produces angular acceleration of the
body when the moment-arm from each thruster is the same length
from the mass center. The simplified model models the
rotational thrusters as the only external torques on the body.

This torque results in angular acceleration that double-
integrates to angular position. Hence the term, “double
integrator” I suppose, but I don’t know who coined the phrase.
In any case, this is a classic, “unstable plant” control
problem. Let’s use this simple problem to set-up some
simulation tools we will use for the quad-copter control
simulations.

Textbook Problem Statement
The following PDF sets-up the basic problem as described in
Digital Control of Dynamics Systems by Franklen, Powell, and
Workman but you can likely find it in any control systems
textbook.

fpw_satellite_attitude

Matlab Simulation Techniques
Matlab software is the go-to tool for control system design
and simulation. You can see I use a neat math software tool
called Maple as well, but this is fairly expensive and less
common. Maple is awesome for creating mathematical,
“documents” with in-line calculations as you have seen to this
point.

I could probably push Maple to do a bunch more, but then I’d
be producing example code that most of you couldn’t use. I’ll
be using Matlab quite a bit now, so I can share M-files (the
Matlab scripts) with you so you can play with them on your
own.

A companion to Matlab is Simulink, which is useful for
simulations. I chose the scripted ordinary differential

https://www.mtwallets.com/wp-content/uploads/2018/11/fpw_satellite_attitude.pdf

equation (ODE) solver method in a loop instead. It is less
intuitive than Simulink, but will offer more flexibility as we
get into the Quadrotor simulations. Under-the-hood Simulink
uses the same ODE solver, but the, “graphical programming” can
become a burden for all but the simplest simulations.

Video of simulation output
This video shows a space capsule initially pointing Up, but
it’s assumed to be in outer space in a zero-gravity
environment. When the simulation begins the capsule thrusters
(illustrated in red) respond to a step-change in desired
capsule orientation of 180-degrees. The simulated control
system thrusts the capsule to the new desired orientation.

An actual, “satellite orientation” controller would be much
more optimal relative to fuel burn. For example, fuel wouldn’t
be wasted allowing the overshoot you see here. The burn
trajectory would be pre-determined somewhat like an, ‘S’ to
minimize the burn, and the servo method illustrated here would
be left to operate in a very small window for final adjustment
most likely. Perhaps we will return to this simple model if
we explore optimal control topics later.

For now, this video shows what the Matlab code below does. If
you run the Matlab M-file you should see what you see in this
video, and from there you can modify the code as you learn.

Matlab M-Files
Download the following two files, place them in the same
folder, and run the, “satellite” script. You’ll see the above
plot output, and you can experiment from there by reading the
comments in the script.

Main simulation script: satellite.m

http://www.mtwallets.com/wp-content/uploads/2018/11/satellite.m

The ODE function: ssodefun.m

Closing Remarks
The goal here was to frame-up some simulation and animation
tools using Matlab. I used a simple, single-axis double-
integrator, “textbook problem” to get the tools set-up.

From here I can proceed to introduce the multi-axis complexity
of the Quadrotor with it’s extra poles and parameters. That’s
next!

http://www.mtwallets.com/wp-content/uploads/2018/11/ssodefun.m

