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Abstract

In this work, a mathematical model of a quadrotor’s dynamics is derived, using
Newton’s and Euler’s laws. A linearized version of the model is obtained, and
therefore a linear controller, the Linear Quadratic Regulator, is derived. After
that, two feedback linearization control schemes are designed. The first one is
the dynamic inversion with zero dynamics stabilization, based on Static Feed-
back Linearization obtaining a partial linearization of the mathematical model.
The second one is the exact linearization and non-interacting control via dynamic
feedback, based on Dynamic Feedback Linearization obtaining a total lineariza-
tion of the mathematical model. Moreover, these nonlinear control strategies
are compared with the Linear Quadratic Regulator in terms of performances.
Finally, the behavior of the quadrotor under the proposed control strategies is
observed in virtual reality by using the Simulink 3D Animation toolbox.
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Chapter 1

Introduction

Recent advances in sensor, in microcomputer technology, in control and in aero-
dynamics theory have made small Unmanned Aerial Vehicles (sUAV) a reality.
The small size, low cost and maneuverability of these systems have made them
potential solutions in a large class of applications. However, the small size of
these vehicles poses significant challenges. The small sensors used on these sys-
tems are much noisier than their larger counterparts. The compact structure of
these vehicles also makes them more vulnerable to environmental effects. In this
work, control strategies for an sUAV platform are developed. Simulation studies
and experimental results are provided.
The fundamental problem with the safe operation of vehicles with wingspan
smaller than one meter is reliable stabilization, robustness to unpredictable
changes in the environment, and resilience to noisy data from small sensor sys-
tems. Autonomous operation of aerial vehicles relies upon on-board stabilization
and trajectory tracking capabilities, and significant effort has to be carried on
to make sure that these systems are able to achieve stable flight. These prob-
lems are compounded at smaller scale, since as the vehicle is more susceptible to
environmental effects (wind, temperature, etc.). Moreover, the small scale im-
plies that lower quality and noisier compact Micro-Electro-Mechanical Systems
(MEMS) sensor are used as primary sensor. The small scale also makes it harder
for the MEMS sensors to be isolated from the vibrations that are common in
these flight platforms.
Since the number and complexity of applications for such systems grows daily,
the control techniques involved must also improve in order to provide better
performance and increased versatility. Historically, simplistic linear control tech-
niques were employed for computational ease and stable hover flight. However,
with better modelling techniques and faster on board computational capabili-
ties, comprehensive nonlinear techniques to be run on real-time have become an
achievable goal. Nonlinear methodologies promise to rapidly increase the per-
formances for these systems and make them more robust. This work presents
several approaches to the automatic control of a quadrotor. Selected linear and
nonlinear control methods are designed according to the system dynamics.
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1.1 Literature review

1.1.1 Quadrotor history

Etienne Oehmichen was the first scientist who experimented with rotorcraft de-
signs in 1920 [1]. Among the six designs he tried, his second multicopter had four
rotors and eight propellers, all driven by a single engine. The Oehmichen used
a steel-tube frame, with two-bladed rotors at the ends of the four arms. The
angle of these blades could be varied by warping. Five of the propellers, spin-
ning in the horizontal plane, stabilized the machine laterally. Another propeller
was mounted at the nose for steering. The remaining pair of propellers was for
forward propulsion. The aircraft exhibited a considerable degree of stability and
controllability for its time, and made more than a thousand test flights during
the middle 1920. By 1923 it was able to remain airborne for several minutes at
a time, and on April 14, 1924 it established the first-ever Fédération Aéronau-
tique Internationale (FAI) [2] distance record for helicopters of 360 m. Later, it
completed the first 1 kilometer closed-circuit flight by a rotorcraft.

Figure 1.1: Oehmichen No.2 Quadrotor [1].

After Oehmichen, Dr. George de Bothezat and Ivan Jerome developed this
aircraft [1], with six bladed rotors at the end of an X-shaped structure. Two small
propellers with variable pitch were used for thrust and yaw control. The vehicle
used collective pitch control. It made its first flight in October 1922. About 100
flights were made by the end of 1923. The highest it ever reached was about
5 m. Although demonstrating feasibility, it was underpowered, unresponsive,
mechanically complex and susceptible to reliability problems. Pilot workload
was too high during hover to attempt lateral motion.
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Figure 1.2: The de Bothezat Quadrotor [1].

Convertawings Model A Quadrotor (1956) was intended to be the prototype for
a line of much larger civil and military quadrotor helicopters [1]. The design
featured two engines driving four rotors with wings added for additional lift in
forward flight. No tail rotor was needed and control was obtained by varying
the thrust between rotors. Flown successfully many times in the mid-1950s,
this helicopter proved the quadrotor design and it was also the first four-rotor
helicopter to demonstrate successful forward flight. However, due to the lack of
orders for commercial or military versions however, the project was terminated.
Convertawings proposed a Model E that would have a maximum weight of 19,000
kg with a payload of 4,900 kg.

Figure 1.3: Model A quadrotor [1].
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1.1.2 Control

Numerous control methods have been proposed for quadrotors, for both regula-
tion and trajectory tracking. The goal is to find a control strategy that allows
the states of a quadrotor to converge to an arbitrary set of time-varying reference
states. Many previous works [3, 4, 5, 6] have demonstrated that it is possible to
control the quadrotor using linear control techniques by linearizing the dynamics
around an operating point, usually chosen to be the hover. However, a wider
flight envelope and better performances can be achieved by using nonlinear con-
trol techniques that consider a more general form of the dynamics of the vehicle
in all flight zones.
Within these nonlinear methods, backstepping [7, 8], sliding mode [9, 10] and
feedback linearization [11] have been demonstrated to be effective for quadrotor
control. Particularly, feedback linearization has shown significant promise for
quadrotor vehicles. A recent work [11] suggests an feedback linearization struc-
ture that deconstructs the quadrotor dynamics into an inner loop containing the
attitude and height of the vehicle and an outer loop containing the position. An-
other feedback linearization allows to get a linear model by Dynamic Feedback
Linearization technique. In general, these control structures shows significant
promise and is investigated in this work along with linear methods such as LQR.
All the control techniques suggested above require complete knowledge of the
system model and model parameters, but errors in the identified values of the
parameters can lead to significant deterioration of the controller performance.
Furthermore, unmodeled variations in system parameters (such as mass or in-
ertia) during flight can cause significant stabilization errors to occur. The need
for an accurate nonlinear model of quadrotor dynamics can be overcome by us-
ing adaptive methods that can react to and correct errors in model parameter
estimates, modify parameter estimates when they change and also adjust for ex-
ternal disturbances. Linear adaptive methods such as Model Reference Adaptive
Control (MRAC) have been suggested [12]. However, as for most linear methods,
the achievable trajectory of the quadrotor is restricted due to the assumption of
linearization. The work of Huang et al. [13] suggests an adaptive backstepping
method, and this approach was extended to include inertia parameters in the
adaptation law by Zeng et al. [14]. Recent work in autonomous grasping and
construction using quadrotors also use indirect adaptive methods, such as the
least-squares method (for mass) proposed by Kumar et al. [15]. However, all
indirect methods correct parameter errors based on the difference between the
expected and actual plant outputs, but do not explicitly correct the model pa-
rameters (as done by direct adaptive methods). Direct adaptation methods were
first suggested by Craig et al. [16] for mechanical manipulators.
In this work, I study two feedback linearization, dynamic inversion with zero
dynamics stabilization and exact linearization and non-interacting control via
dynamic feedback. They are compared with a linear control technique: Linear
Quadratic Regulator.
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1.2 Outline
The rest of this thesis is organized as follows.

Chapter 2. In this chapter a qualitative introduction on the principles of work-
ing of a quadrotor is discussed. Then the mathematical model is presented and
a linearized version of the model is obtained.

Chapter 3. In this chapter a linear controller, the Linear Quadratic Regu-
lator, is derived and two feedback linearization control schemes are designed.
The first one is the dynamic inversion with zero dynamics stabilization, based on
Static Feedback Linearization obtaining a partial linearization of the mathemat-
ical model. The second one is the exact linearization and non-interacting control
via dynamic feedback, based on Dynamic Feedback Linearization obtaining a
total linearization of the mathematical model.

Chapter 4. In this chapter results obtained with the different controllers are
illustrated, and the differences are discussed. Finally, the behavior of the quadro-
tor under the proposed control strategies is observed in virtual reality by using
the Simulink 3D Animation toolbox.

Chapter 5. Finally, in this chapter, conclusions and possible future devel-
opments of the work are presented.
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Chapter 2

Mathematical model

2.1 Preliminar notions
The quadrotor, an aircraft made up of four engines, holds the electronic board in
the middle and the engines at four extremities. Before describing the mathemat-
ical model of a quadrotor, it is necessary to introduce the reference coordinates
in which we describe the structure and the position. For the quadrotor, it is
possible to use two reference systems. The first is fixed and the second is mo-
bile. The fixed coordinate system, called also inertial, is a system where the
first Newton’s law is considered valid. As fixed coordinate system, we use the
ONED systems, where NED is for North-East-Down. As we can observe from the
following Figure 2.1, its vectors are directed to Nord, East and to the center of
the Earth.

Figure 2.1: ONED fixed reference system.

The mobile reference system that we have previously mentioned is united with
the barycenter of the quadrotor. In the scientific literature it is called OABC

7
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system, where ABC is for Aircraft Body Center. Figure 2.2 illustrates underlines
the two coordinate systems.

Figure 2.2: Mobile reference system and fixed reference system.

The attitude and position of the quadrotor can be controlled to desired values by
changing the speeds of the four motors. The following forces and moments can be
performed on the quadrotor: the thrust caused by rotors rotation, the pitching
moment and rolling moment caused by the difference of four rotors thrust, the
gravity, the gyroscopic effect, and the yawing moment. The gyroscopic effect only
appears in the lightweight construction quadrotor. The yawing moment is caused
by the unbalanced of the four rotors rotational speeds. The yawing moment
can be cancelled out when two rotors rotate in the opposite direction. So, the
propellers are divided in two groups. In each group there are two diametrically
opposite motors that we can easily observe thanks to their direction of rotation.
Namely, we distinguish:

• front and rear propellers (numbers 2 and 4 in Figure 2.3), rotating coun-
terclockwise;

• right and left propellers (numbers 1 and 3 in Figure 2.3), rotating clockwise.

Figure 2.3: Direction of propeller’s rotations.



2.1. Preliminar notions 9

The space motion of the rigid body aircraft can be divided into two parts: the
barycenter movement and movement around the barycenter. Six degrees of free-
dom are required in describing any time space motion. They are three barycenter
movements and three angular motions, namely, three translation and three ro-
tation motions along three axes. The control for six degrees of freedom motions
can be implemented by adjusting the rotational speeds of different motors. The
motions include forward and backward movements, lateral movement, vertical
motion, roll motion, and pitch and yaw motions. The yaw motion of the quadro-
tor can be realised by a reactive torque produced by the rotor. The size of the
reactive torque is relative to the rotor speed. When the four rotor speeds are the
same, the reactive torques will balance each other and quadrotor will not rotates,
whereas if the four rotor speeds are not absolutely same, the reactive torques will
not be balanced, and the quadrotor will start to rotate. When the four rotor
speeds synchronously increase and decrease is also required in the vertical move-
ment. Because of four inputs and six outputs in a quadrotor, such quadrotor is
considered an underactuated nonlinear complex system. In order to control it,
some assumptions are made in the process of quadrotor modeling: the quadrotor
is a rigid body; the structure is symmetric; the ground effect is ignored.
Depending on the speed rotation of each propeller it is possible to identify the
four basic movements of the quadrotor, which are showed in Figures 2.4 to 2.7.

Figure 2.4: Thrust.

Figure 2.5: Pitch.
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Figure 2.6: Roll.

Figure 2.7: Yaw.

2.2 Euler angles

The Euler angles are three angles introduced by Leonhard Euler to describe the
orientation of a rigid body. To describe such an orientation in the 3-dimensional
Euclidean space, three parameters are required. They can be given in several
ways; we will use ZYX Euler angles [26]. They are also used to describe the
orientation of a frame of reference relative to another and they transform the
coordinates of a point in a reference frame in the coordinates of the same point
in another reference frame. The Euler angles are typically denoted as φ ∈]−π, π],
θ ∈]π

2
, π
2
[, ψ ∈]−π, π]. Euler angles represent a sequence of three elemental rota-

tions, i.e. rotations about the axes of a coordinate system, since any orientation
can be achieved by composing three elemental rotations. These rotations start
from a known standard orientation. This combination used is described by the
following rotation matrices [27]:

Rx(φ) =




1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)


 , (2.1)
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Ry(θ) =



c(θ) 0 s(θ)

0 1 0
−s(θ) 0 c(θ)


 , (2.2)

Rz(ψ) =



c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1


 , (2.3)

where c(φ) = cos(φ), s(φ) = sin(φ), c(θ) = cos(θ), s(θ) = sin(θ), c(ψ) = cos(ψ),
s(ψ) = sin(ψ). So, the inertial position coordinates and the body reference
coordinates are related by the rotation matrix Rzyx(φ, θ, ψ) ∈ SO(3):

Rzyx(φ, θ, ψ) = Rz(ψ) ·Ry(θ) ·Rx(φ)

=



c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ) + s(φ)s(ψ)
c(θ)s(ψ) s(φ)s(θ)s(ψ) + c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)
−s(θ) s(φ)c(θ) c(φ)c(θ)


 . (2.4)

This matrix describe the rotation from the body reference system to the inertial
reference.

Figure 2.8: Euler Angles.
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2.3 Quadrotor mathematical model

We provide here a mathematical model of the quadrotor, exploiting Newton and
Euler equations for the 3D motion of a rigid body. The goal of this section is to
obtain a deeper understanding of the dynamics of the quadrotor and to provide
a model that is sufficiently reliable for simulating and controlling its behavior.
Let us call

[
x y z φ θ ψ

]T the vector containing the linear and angular
position of the quadrotor in the earth frame and

[
u v w p q r

]T the vector
containing the linear and angular velocities in the body frame. From 3D body
dynamics, it follows that the two reference frames are linked by the following
relations:

v = R · vB, (2.5)

ω = T · ωB, (2.6)

where v =
[
ẋ ẏ ż

]T ∈ R3, ω =
[
φ̇ θ̇ ψ̇

]T ∈ R3, vB =
[
u v w

]T ∈ R3,
ωB =

[
p q r

]T ∈ R3, and T is a matrix for angular transformations [27]

T =




1 s(φ)t(θ) c(φ)t(θ)
0 c(φ) −s(φ)

0 s(φ)
c(θ)

c(φ)
c(θ)


 , (2.7)

where t(θ) = tan(θ). So, the kinematic model of the quadrotor is:





ẋ = w[s(φ)s(ψ) + c(φ)c(ψ)s(θ)]− v[c(φ)s(ψ)− c(ψ)s(φ)s(θ)] + u[c(ψ)c(θ)]

ẏ = v[c(φ)c(ψ) + s(φ)s(ψ)s(θ)]− w[c(ψ)s(φ)− c(φ)s(ψ)s(θ)] + u[c(θ)s(ψ)]

ż = w[c(φ)c(θ)]− u[s(θ)] + v[c(θ)s(φ)]

φ̇ = p+ r[c(φ)t(θ)] + q[s(φ)t(θ)]

θ̇ = q[c(φ)]− r[s(φ)]

ψ̇ = r c(φ)
c(θ)

+ q s(φ)
c(θ)

(2.8)

Newton’s law states the following matrix relation for the total force acting on
the quadrotor:
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m(ωB ∧ vB + v̇B) = fB, (2.9)

wherem is the mass of the quadrotor, ∧ is the cross product and fB =
[
fx fy fz

]T ∈
R3 is the total force.
Euler’s equation gives the total torque applied to the quadrotor:

I · ω̇B + ωB ∧ (I · ωB) = mB, (2.10)

where mB =
[
mx my mz

]T ∈ R3 is the total torque and I is the diagonal
inertia matrix:

I =



Ix 0 0
0 Iy 0
0 0 Iz


 ∈ R3×3.

So, the dynamic model of the quadrotor in the body frame is:





fx = m(u̇+ qw − rv)

fy = m(v̇ − pw + ru)

fz = m(ẇ + pv − qu)

mx = ṗIx − qrIy + qrIz

my = q̇Iy + prIx − prIz
mz = ṙIz − pqIx + pqIy

(2.11)

The equations stand as long as we assume that the origin and the axes of the
body frame coincide with the barycenter of the quadrotor and the principal axes.
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2.4 Forces and moments
The external forces in the body frame, fB are given by:

fB = mgRT · êz − ftê3 + fw, (2.12)

where êz is the unit vector in the inertial z axis, ê3 is the unit vector in the
body z axis, g is the gravitational acceleration, ft is the total thrust generated
by rotors and fw =

[
fwx fwy fwz

]T ∈ R3 are the forces produced by wind on
the quadrotors. The external moments in the body frame, mB are given by

mB = τB − ga + τw, (2.13)

where ga represents the gyroscopic moments caused by the combined rotation of
the four rotors and the vehicle body, τB =

[
τx τy τz

]T ∈ R3 are the control
torques generated by differences in the rotor speeds and τw =

[
τwx τwy τwz

]T ∈
R3 are the torques produced by wind on the quadrotors. ga is given by

ga =
4∑

i=1

Jp(ωB ∧ ê3)(−1)i+1Ωi, (2.14)

where Jp is the inertia of each rotor and Ωi is the angular speed of the ith rotor.
According to [18], the Jp term is found to be small and, for this reason, the
gyroscopic moments are removed in the controller formulation. In addition, there
are numerous aerodynamic and aeroelastic phenomenon that affect the flight of
the quadrotor, such as the ground effects: when flying close to the ground (or
during the landing stage), the air flow generated by the propellers disturbs the
dynamics of the quadrotors. So, the complete dynamic model of the quadrotor
in the body frame is obteined substituting the force expression in (2.11):





−mg[s(θ)] + fwx = m(u̇+ qw − rv)

mg[c(θ)s(φ)] + fwy = m(v̇ − pw + ru)

mg[c(θ)c(φ)] + fwz − ft = m(ẇ + pv − qu)

τx + τwx = ṗIx − qrIy + qrIz

τy + τwy = q̇Iy + prIx − prIz
τz + τwz = ṙIz − pqIx + pqIy

(2.15)
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2.5 Actuator dynamics
Here we consider the inputs that can be applied to the system in order to control
the behavior of the quadrotor. The rotors are four and the degrees of freedom we
control are as many: commonly, the control inputs that are considered are one
for the vertical thrust and one for each of the angular motions. Let us consider
the values of the input forces and torques proportional to the squared speeds of
the rotors [19]; their values are the following:





ft = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

τx = bl(Ω2
3 − Ω2

1)

τy = bl(Ω2
4 − Ω2

2)

τz = d(Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3)

(2.16)

where l is the distance between any rotor and the center of the drone, b is the
thrust factor and d is the drag factor. Substituting (2.16) in (2.15), we have: So,
the dynamic model of the quadrotor in the body frame is:





−mg[s(θ)] + fwx = m(u̇+ qw − rv)

mg[c(θ)s(φ)] + fwy = m(v̇ − pw + ru)

mg[c(θ)c(φ)] + fwz − b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4) = m(ẇ + pv − qu)

bl(Ω2
3 − Ω2

1) + τwx = ṗIx − qrIy + qrIz

bl(Ω2
4 − Ω2

2) + τwy = q̇Iy + prIx − prIz
d(Ω2

2 + Ω2
4 − Ω2

1 + Ω2
3) + τwz = ṙIz − pqIx + pqIy

(2.17)

2.6 State-space model
Organizing the state’s vector in the following way:

x =
[
φ θ ψ p q r u v w x y z

]T ∈ R12 (2.18)

it is possible to rewrite the equations of the dynamics of the quadrotor in the
state-space from (2.8) and (2.15):
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



φ̇ = p+ r[c(φ)t(θ)] + q[s(φ)t(θ)]

θ̇ = q[c(φ)]− r[s(φ)]

ψ̇ = r c(φ)
c(θ)

+ q s(φ)
c(θ)

ṗ = Iy−Iz
Ix

rq + τx+τwx

Ix

q̇ = Iz−Ix
Iy

pr + τy+τwy

Iy

ṙ = Ix−Iy
Iz

pq + τz+τwz

Iz

u̇ = rv − qw − g[s(θ)] + fwx

m

v̇ = pw − ru+ g[s(φ)c(θ)] + fwy

m

ẇ = qu− pv + g[c(θ)c(φ)] + fwz−ft
m

ẋ = w[s(φ)s(ψ) + c(φ)c(ψ)s(θ)]− v[c(φ)s(ψ)− c(ψ)s(φ)s(θ)] + u[c(ψ)c(θ)]

ẏ = v[c(φ)c(ψ) + s(φ)s(ψ)s(θ)]− w[c(ψ)s(φ)− c(φ)s(ψ)s(θ)] + u[c(θ)s(ψ)]

ż = w[c(φ)c(θ)]− u[s(θ)] + v[c(θ)s(φ)]

(2.19)

Below we obtain two alternative forms of the dynamical model useful for studying
the control. From Newton’s law we can write:

mv̇ = R · fB = mgêz − ftR · ê3, (2.20)

therefore:





ẍ = − ft
m

[s(φ)s(ψ) + c(φ)c(ψ)s(θ)]

ÿ = − ft
m

[c(φ)s(ψ)s(θ)− c(ψ)s(φ)]

z̈ = g − ft
m

[c(φ)c(θ)]

(2.21)

Now a simplification is made by setting
[
φ̇ θ̇ ψ̇

]T
=
[
p q r

]T . This assump-
tion holds true for small angles of movement [11]. So, the dynamic model of the
quadrotor in the inertial frame is:



2.6. State-space model 17





ẍ = − ft
m

[s(φ)s(ψ) + c(φ)c(ψ)s(θ)]

ÿ = − ft
m

[c(φ)s(ψ)s(θ)− c(ψ)s(φ)]

z̈ = g − ft
m

[c(φ)c(θ)]

φ̈ = Iy−Iz
Ix

θ̇ψ̇ + τx
Ix

θ̈ = Iz−Ix
Iy

φ̇ψ̇ + τy
Iy

ψ̈ = Ix−Iy
Iz

φ̇θ̇ + τz
Iz

(2.22)

Redefining the state’s vector as:

x =
[
x y z ψ θ φ ẋ ẏ ż p q r

]T ∈ R12 (2.23)

it is possible to rewrite the equations of the quadrotor in the spate-space:

ẋ = f(x) +
4∑

i=1

gi(x)ui, (2.24)

where

f(x) =




ẋ
ẏ
ż

q s(φ)
c(θ)

+ r c(φ)
c(θ)

q[c(φ)]− r[s(φ)]
p+ q[s(φ)t(θ)] + r[c(φ)t(θ)]

0
0
g

(Iy−Iz)
Ix

qr
(Iz−Ix)
Iy

pr
(Ix−Iy)
Iz

pq




(2.25)
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and

g1(x) =
[
0 0 0 0 0 0 g71 g81 g91 0 0 0

]T ∈ R12,

g2(x) =
[
0 0 0 0 0 0 0 0 0 1

Ix
0 0

]T ∈ R12,

g3(x) =
[
0 0 0 0 0 0 0 0 0 0 1

Iy
0
]T ∈ R12,

g4(x) =
[
0 0 0 0 0 0 0 0 0 0 0 1

Iz

]T ∈ R12,

with

g71 = − 1
m

[s(φ)s(ψ) + c(φ)c(ψ)s(θ)],

g81 = − 1
m

[c(ψ)s(φ)− c(φ)s(ψ)s(θ)],

g91 = − 1
m

[c(φ)c(θ)].

2.7 Linear model

Set u the control vector: u =
[
ft τx τy τz

]T ∈ R4. The linearization’s proce-
dure is developed around an equilibrium point x̄, which for fixed input ū is the
solution of the algebric system: or rather that value of state’s vector, which on
fixed constant input is the solution of algebraic system:

f̂(x̄, ū) = 0. (2.26)

Since the function f̂ is nonlinear, problems related to the existence an uniqueness
of the solution of system (2.26) arise. In particular, for the system in hand, the
solution is difficult to find in closed form because of trigonometric functions
related each other in no-elementary way. For this reason, the linearization is
performed on a simplified model called to small oscillations. This simplification
is made by approximating the sine function with its argument and the cosine
function with unity. The approximation is valid if the argument is small. The
resulting system is described by the following equations:
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



φ̇ ≈ p+ rθ + qφθ

θ̇ ≈ q − rφ
ψ̇ ≈ r + qφ

ṗ ≈ Iy−Iz
Ix

rq + τx+τwx

Ix

q̇ ≈ Iz−Ix
Iy

pr + τy+τwy

Iy

ṙ ≈ Ix−Iy
Iz

pq + τz+τwz

Iz

u̇ ≈ rv − qw − gθ + fwx

m

v̇ ≈ pw − ru+ gφ+ fwy

m

ẇ ≈ qu− pv + g + fwz−ft
m

ẋ ≈ w(φψ + θ)− v(ψ − φθ) + u

ẏ ≈ v(1 + φψθ)− w(φ− ψθ) + uψ

ż ≈ w − uθ + vφ

(2.27)

which can be written in the compact form

ẋ = f(x,u). (2.28)

2.7.1 Linearization

As said above, in order to perform the linearization, an equilibrium point is
needed. Such an equilibrium point can be:

x̄ =
[
0 0 0 0 0 0 0 0 0 x̄ ȳ z̄

]T ∈ R12. (2.29)

From the equations, we can find that the equilibrium point (2.29) is obtained by
the constant input value:

ū =
[
mg 0 0 0

]T ∈ R4. (2.30)
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Note that this particular value represents the force necessary to delete the quadro-
tor’s weight and it consents its hovering. After determined the equilibrium point
x̄ and the corresponding nominal input ū, we have that the matrices associated
to the linear system are given by relations:

A =
∂f(x,u)

∂x

∣∣∣∣
x=x̄
u=ū

=




0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −g 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0




(2.31)

B =
∂f(x,u)

∂u

∣∣∣∣
x=x̄
u=ū

=




0 0 0 0
0 0 0 0
0 0 0 0
0 1

Ix
0 0

0 0 1
Iy

0

0 0 0 1
Iz

0 0 0 0
0 0 0 0
1
m

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




(2.32)

If we consider the disturbance by wind, set:

d =
[
fwx fwy fwz τwx τwy τwz

]T ∈ R6 (2.33)
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D =
∂f(x,u,d)

∂d

∣∣∣∣
x=x̄
u=ū

=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1

Ix
0 0

0 0 0 0 1
Iy

0

0 0 0 0 0 1
Iz

1
m

0 0 0 0 0
0 1

m
0 0 0 0

0 0 1
m

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(2.34)

the linear model is:

ẋ = A · x + B · u + D · d (2.35)





φ̇ = p

θ̇ = q

ψ̇ = r

ṗ = τx+τwx

Ix

q̇ = τy+τwy

Iy

ṙ = τz+τwz

Iz

u̇ = −gθ + fwx

m

v̇ = gφ+ fwy

m

ẇ = fwz−ft
m

ẋ = u

ẏ = v

ż = w

(2.36)

2.7.2 Controllability and observability of the linear system

Controllability and observability represent two major concepts of modern control
system theory [20]. These concepts were introduced by R. Kalman in 1960. They
can be roughly defined as follows.
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• Controllability: In order to be able to do whatever we want with the given
dynamic system under control input, the system must be controllable.

• Observability: In order to see what is going on inside the system, the
system must be observable.

The concepts of controllability and observability for a linear time-invariant dy-
namical system can be related to suitable linear systems of algebraic equations.
It is well known that a solvable system of linear algebraic equations has a so-
lution if and only if the rank of the system matrix is full. Observability and
controllability tests will be connected to the rank tests of certain matrices: the
controllability and observability matrices. For the purpose of studying its ob-
servability, we consider the linear system:

ẋ = A · x x(t0) = x0 (2.37)

where A is given in (2.31) and with the corresponding measurements:

y = C · x (2.38)

of dimensions x ∈ R12,y ∈ R12,A ∈ R12x12,C ∈ R12×12. The observability
matrix is given by:

O =




C
C ·A
C ·A2

...
C ·A11



∈ R144×12 (2.39)

The linear continuous-time system (2.37) with measurements (2.38) is observable
if and only if the observability matrix has full rank.
The controllability matrix is given by:

C =
[
B A ·B A2 ·B · · · A11 ·B

]
∈ R12×48 (2.40)
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where B is given in (2.32). The linear continuous-time system (2.37) with mea-
surements (2.38) is controllable if and only if the controllability matrix has full
rank. To check its observability and controllability, we used Matlab. The linear
system results to be controllable and observable.
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Chapter 3

Control strategies

In this section we discuss three control strategies. One control strategy is linear
(Linear Quadratic Regulator), and the other two control strategies are nonlin-
ear (exact linearization and non-interacting control via dynamic feedback and
dynamic inversion with zero-dynamics stabilization). Some comparisons about
these control strategies are done.

3.1 Linear Quadratic Regulator control
The objective of the optimal control [30] is to determine control signal so that the
system to be controlled can meet physical constraints and minimize/maximize a
cost/performance function. Namely, the solution of an optimization problem is
supposed to bring the system’s state x(t) to the desired trajectory xd minimizing
some cost. Furthermore, it minimize the use of the control inputs, thus reducing
the use of actuators.

The underling needs of optimization control are:

• A model able to best describe the behavior of the dynamic system target
of control;

• A cost index J , taking into account specifications and need of the designer;

• Possible boundary conditions and physical constraints limiting the system.

Let us consider a dynamic system and set x as state and set u as input:

ẋ(t) = f [x(t),u(t), t]. (3.1)

Being x and u vectors of n− 1 and r − 1 length, it is possible to define J as:

25
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J = e[x(tf )] +

∫ tf

t0

w[x(t),u(t), t]dt, (3.2)

where the weight function w and the terminal cost e are non-negative function
such as w(0,0, t) = 0 and e(0) = 0. The boundary conditions are:

• x(t0) = x0 ;

• x(tf ) and tf unconstrained.

It is then possible to define the solution of an optimization problem:

u(t),∀t ∈ [t0, tf ]. (3.3)

Such a function aims at minimizing J . Considering the limit of the time interval
as approaching infinitive, highlighting the system and the cost index:

{
ẋ = A · x + B · u
y = C · x (3.4)

J =

∫ ∞

t0

{u(t)T ·R · u(t) + [x(t)− xd(t)]T ·Q · [x(t)− xd(t)]}dt, (3.5)

being R and Q such matrixes that:

• R is the cost of actuators (R = RT positive definite matrix; R ∈ Rm×m);

• Q is the cost of the state (Q = QT positive semi-definite matrix; Q ∈ Rr×r).

It is possible to demonstrate [30] that the control’s input u(·) which minimizes
the functional is a state linear feedback as:

u(t) = −K · [x(t)− xd(t)], (3.6)
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where:

K = R−1 ·BT · S. (3.7)

The S matrix is a solution of the Riccati’s algebraic equation:

S ·A + AT · S− S ·BR−1 ·BT · S + CT ·Q ·C = 0, (3.8)

where S is a positive definite matrix. The Figure 3.1 shows a scheme of the
implemented system:

Linear model of
the quadrotor

K
x

xd x

Figure 3.1: LQR control.

The algebraic equation can be solved through Riccati’s method, performed by
Matlab through LQR function:

K = LQR(A,B,Q,R).

Given a LQR problem [30] over an infinity horizon and factorized the matrix
Q = ET ·E, if the (A,B) couple is controllable and the (A,E) couple is observable,
we will get:

• there exists one S solution positive definite of the Riccati’s algebraic equa-
tion;

• the closed loop’s system ẋ = (A−B ·K) · x is asymptotically stable, with
K = R−1 ·BT · S.

We consider the linear system (2.35) without disturbance. We choose the ma-
trices Q and R taking in account A (2.31) and B (2.32). We apply the LQR
control using the LQR function from Matlab/Simulink.
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3.2 Feedback linearization control
Feedback linearization is an approach to nonlinear control design [28] that has
attracted several researches in the last years. The central idea is to algebraically
transform nonlinear systems dynamics into (fully or partly) linear ones, so that
linear control techniques can be applied. Two nonlinear control design techniques
are discussed here in detail.
In this chapter, we will focus on continuous-time, state-space models of the form

{
ẋ = f(x) + G(x) · u
y = h(x)

(3.9)

where: x ∈ Rn is the vector of state variables, u ∈ Rm is the vector of control
input variables, y ∈ Rm is the vector of output variables, f(x) is an n-dimensional
vector of nonlinear functions, G(x) is an (n×m)-dimensional matrix of nonlinear
functions and h(x) is anm-dimensional vector of nonlinear functions. The single-
input, single-output (SISO) case where m = 1 will be emphasized to explain the
basic concepts.
Consider the Jacobian linearization 2.7.1 of the nonlinear model (3.9) around
an equilibrium point (u0,x0,y0). In this way the model can be written as a
linearized state-space system,

{
ẋ = A · x + B · u
y = C · x (3.10)

with obvious definition for the matrices A,B,C. It is important to note that
(3.2) is an exact representation of nonlinear model only at the point (x0,u0). As
a result, a control strategy based on a linearized model may yield unsatisfactoy
performance and robustness at other operating points.
In this section we show that this kind of nonlinear control techniques can produce
a linear model that is an exact representation of the original nonlinear model over
a large set of operating conditions. The feedback linearization is based on two
operations:

• nonlinear change of coordinates;

• nonlinear state feedback.

After the feedback linearization, the input-output model is linear in the new set
of coordinates. Specifically, we have:



3.2. Feedback linearization control 29

{
ξ̇ = A · ξ + B · v
w = C · ξ (3.11)

where: ξ ∈ Rr is a vector of transformed state variables, v ∈ Rm is a trasformed
input variables, w ∈ Rm is a vector of transformed output variables and the ma-
trices A,B,C have a very simple canonical structure. If r < n, an additional n−r
state variables must be introduced to complete the coordinate transformation.
The integer r is called the relative degree and is a fundamental characteristic of
a nonlinear system.
Most feedback linearization approaches are based on input-output linearization
or state-space linearization. In the input-output linearization approach, the ob-
jective is to linearize the map beetween the trasformed input v and the actual
output y. A controller is then designed for the linearized input-output model. In
the state-space linearization approach, the goal is to linearize the map between
the transformed inputs and the entire vector of transformed state variables. A
linear controller is then synthesized for the linear input-state model. However,
this approach may lead to a complex controller design task because the map be-
tween the transformed inputs and the original outputs y is generally nonlinear.
Feedback linearization produces a linear model by the use of nonlinear coordinate
transformations and nonlinear state feedback. In some applications, the control
objectives can be achieved with a nonlinear static feedback control law of the
form,

u = α(x) + β(x) · v, (3.12)

where α is an m-dimensional vector of nonlinear functions and β is an m ×m
matrix of nonlinear functions. For some processes, it is not possible to satisfy
the control objective with a static control and a dynamic state feedback control
law must be employed,

{
ζ̇ = γ(x, ζ) + ∆(x, ζ) · v
u = α(x, ζ) + β(x, ζ) · v (3.13)

where ζ is an q-dimensional vector of controller state variables; γ is an q-
dimensional vector of nonlinear functions; and ∆ is a q×m matrix of nonlinear
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functions.
The quadrotor has six outputs y =

[
x y z φ θ ψ

]
and the vehicle has four

inputs. There are two degree of freedom that are left uncontrollable. A solution
to this problem [11] is to decompose it into two distinct control loops (Dynamic
inversion with zero-dynamics stabilization). Another solution provides the use
of dynamic feedback control (Exact linearization and non-interacting control via
dynamic feedback). Such control structures are based on the input-output lin-
earization described in appendix A.

3.2.1 Exact linearization and non-interacting control via
dynamic feedback

This section deals with the design of a feedback control law (and a change of
coordinates in the state-space) to the purpose of transforming the nonlinear
system (2.24) into a linear and controllable one: this problem is known in the
literature as the exact linearization problem [23, 24, 25]. Moreover, from an
input-output point of view, we would like to reduce the system , to an aggregate
of independent single-input single-output channels: this is the non-interacting
control problem [23] or input-output decoupling problem [24]. It will be shown
that none of these two problems is solvable for the nonlinear system (2.24) by
means of a static state feedback control law but by means of a dynamic feedback
control law. First, it is necessary to define the control objective by choosing an
output function for the system (2.24). To avoid unnecessary complications, we
set the number of input channels equal to the number of output channels. We
would like to control the absolute position of the quadrotor

[
x y z

]T and the
yaw angle ψ. Therefore, the output function is chosen as:

y = h(x) =
[
x y z ψ

]T
. (3.14)

We assume the state x of the system being fully available for measurements and
we seek a static state feedback control law of the form:

u = α(x) + β(x) · v, (3.15)

where v is an external reference input to be defined later,
α(x) =

[
α1(x) α2(x) α3(x) α4(x)

]T and β(x) ∈ R4×4.
Let

[
r1 r2 r3 r4

]T be the relative degree vector of the system (2.24). We have
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[
y
(r1)
1 y

(r2)
2 y

(r3)
3 y

(r4)
4

]T
= b(x) + ∆(x) · u, (3.16)

where

∆(x) =




Lg1L
r1−1
f h1(x) Lg2L

r1−1
f h1(x) Lg3L

r1−1
f h1(x) Lg4L

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) Lg2L

r2−1
f h2(x) Lg3L

r2−1
f h2(x) Lg4L

r2−1
f h2(x)

Lg1L
r3−1
f h3(x) Lg2L

r3−1
f h3(x) Lg3L

r3−1
f h3(x) Lg4L

r3−1
f h3(x)

Lg1L
r4−1
f h4(x) Lg2L

r4−1
f h4(x) Lg3L

r4−1
f h4(x) Lg4L

r4−1
f h4(x)


 ,

(3.17)

b(x) =




Lr1f h1(x)

Lr2f h2(x)

Lr3f h4(x)

Lr4f h4(x)


 . (3.18)

The input-output decoupling problem is solvable if and only if the matrix ∆(x)
is nonsingular. In this case, the static state feedback (3.15) with:

{
α(x) = −∆−1(x) · b(x)

β(x) = ∆−1(x)
(3.19)

renders the closed loop system linear and decoupled from an input-output point
of view. More precisely, we have

y
(ri)
i = vi for all i, 1 ≤ i ≤ 4.

However, for the nonlinear system (2.24), we have
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r1 = r2 = r3 = r4 = 2

and

∆(x) =




δ1,1 0 0 0
δ2,1 0 0 0
δ3,1 0 0 0
0 0 δ4,3 δ4,4


 ,

with:

δ1,1 = g71;

δ2,1 = g81;

δ3,1 = g91;

δ4,3 = s(φ)
Iyc(θ)

;

δ4,4 = c(φ)
Izc(θ)

.

Obviously ∆(x) is singular for all x and therefore the input-output decoupling
problem is not solvable for the system (2.24) by means of a static state feedback
control law. The reason why the matrix ∆(x) is singular is that the derivatives
y
(2)
1 , y(2)2 and y(2)3 are allaffected by the input u1 and not by u2, u3, u4. Thus, in
order to get ∆(x) nonsingular, we could try to make y(2)1 , y(2)2 and y(2)3 indipendent
of u1, that is to delay the appearance of u1 to higher order derivatives of y1, y2
and y3 and hope that the others inputs show up [23]. In order to achieve this
result, we set u1 equal to the output of a double integrator driven by ū1, i.e.





u1 = ζ

ζ̇ = ξ

ξ̇ = ū1

(3.20)

For consistency of notation we also set, for the other input channels which have
been left unchanged, the following
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



u2 = ū2

u3 = ū3

u4 = ū4

(3.21)

Note that u1 is not anymore an input for the system (2.24) but becomes the
internal state ξ for the new dynamical system (3.20). The extended system
obtained is described by equations of the form

˙̄x = f̄(x̄) +
4∑

i=1

ḡi(x̄)ūi, (3.22)

in which

x̄ =
[
x y z ψ θ φ ẋ ẏ ż ζ ξ p q r

]T ∈ R14, (3.23)

f̄(x̄) =




ẋ
ẏ
ż

q s(φ)
c(θ)

+ r c(φ)
c(θ)

q[c(φ)]− r[s(φ)]
p+ q[s(φ)t(θ)] + r[c(φ)t(θ)]

g71(ψ, θ, φ)ζ
g81(ψ, θ, φ)ζ
g91(ψ, θ, φ)ζ

ξ
0

(Iy−Iz)
Ix

qr
(Iz−Ix)
Iy

pr
(Ix−Iy)
Iz

pq




, (3.24)
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and

ḡ1(x̄) =
[
0 0 0 0 0 0 0 0 0 0 1 0 0 0

]T ∈ R14,

ḡ2(x̄) =
[
0 0 0 0 0 0 0 0 0 0 0 1

Ix
0 0

]T ∈ R14,

ḡ3(x̄) =
[
0 0 0 0 0 0 0 0 0 0 0 0 1

Iy
0
]T ∈ R14

ḡ4(x̄) =
[
0 0 0 0 0 0 0 0 0 0 0 0 0 1

Iz

]T ∈ R14

Now, the input-output decoupling problem is solvable for the nonlinear system
(2.24) by means of a dynamic feedback control law if it is solvable via a static
feedback for the extended system (3.22). For the nonlinear system , the relative
degree vector {r1,r2,r3,r4} is given by

r1 = r2 = r3 = 4, r4 = 2,

and we have

[
y
(r1)
1 y

(r2)
2 y

(r3)
3 y

(r4)
4

]T
= b(x̄) + ∆(x̄)u, (3.25)

where ∆(x̄) and b(x̄) are computed using equations (3.17) and (3.18). The
matrix ∆(x̄) is nonsingular at any point characterized by ζ 6= 0,−π

2
< φ <

π
2
,−π

2
< θ < π

2
.

Therefore, the input-output decoupling problem is solvable for the system (2.24)
by means of a dynamic feedback control law of the form:

ū = α(x̄) + β(x̄) · v; (3.26)

where α(x̄) and β(x̄) are computed using 3.19. Recall the relation between u
and ū (3.20 and 3.21), we get the structure in Figure 3.2 for the control law of
the original system (2.24).
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∫ ∫v1
v2
v3
v4

ū1

ū2

ū3

ū4

quadrotorū = α(x ) + β(x ) · v

x

ξ ζ = u1

u2

u3

u4

Figure 3.2: Block diagram of the control law.

Moreover, since the extended system (3.22) has dimension n = 14, the condition

r1 + r2 + r3 + r4 = n,

is fulfilled and, therefore, the system can be transformed via a dynamic feedback
into a system which, in suitable coordinates, is fully linear and controllable. The
change of coordinates z = Φ(x̄) is given by





z1 = h1(x) = x

z2 = Lfh1(x) = ẋ

z3 = L2
fh1(x) = ẍ

z4 = L3
fh1(x) = x(3)

z5 = h2(x) = y

z6 = Lfh2(x) = ẏ

z7 = L2
fh2(x) = ÿ

z8 = L3
fh2(x) = y(3)

z9 = h3(x) = z

z10 = Lfh3(x) = ż

z11 = L2
fh3(x) = z̈

z12 = L3
fh3(x) = z(3)

z13 = h4(x) = ψ

z14 = Lfh4(x) = ψ̇

(3.27)
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In the new coordinates, the system appears as

{
ż = A · z + B · v
y = C · z (3.28)

where

z =
[
z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14

]T ∈ R14,

v =
[
v1 v2 v3 v4

]T ∈ R4,

A =




A1 0 0 0
0 A1 0 0
0 0 A1 0
0 0 0 A2


 ∈ R14x14 B =




B1

B2

B3

B4


 ∈ R14x4

C =




c1
T 0 0 0

0 c1
T 0 0

0 0 c1
T 0

0 0 0 c2
T


 ∈ R4x14

where

A1 =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 ∈ R4x4, A2 =

[
0 1
0 0

]
∈ R2x2,

B1 =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


 ∈ R4x4, B2 =




0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0


 ∈ R4x4,
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B3 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0


 ∈ R4x4, B4 =

[
0 0 0 0
0 0 0 0

]
∈ R2x4,

c1 =
[
1 0 0 0

]T ∈ R4, c2 =
[
1 0

]T ∈ R2,

In Figure 3.3 the scheme of the linear system is shown.

∫ ∫v1

v2

v3

v4

∫∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫

z1 = xz2z3z4

z5 = yz6z7z8

z9 = zz10z11z12

z13 = ψz14

Figure 3.3: Block diagram of the closed loop system.

On the linear system (3.28) it is possible to impose a further feedback control,
using for example the Linear Quadratic Regulator control.

3.2.2 Dynamic inversion with zero-dynamics stabilization

In this control there are two control loops, namely an inner loop that controls the
height and attitude of the system, and an outer loop that controls the position.
This solution was first suggested in [11]. Consider the inner loop of the quadrotor
system as the height and attitude:

xq =
[
z φ θ ψ

]T
. (3.29)

For this system, the traditional feedback linearization methodology can be ap-
plied here with the output equation y = xq. Picking this inner loop as the output
equation, the first derivative would lead to



38 Chapter 3 Control strategies

ẋq =
[
ż φ̇ θ̇ ψ̇

]T
. (3.30)

Note here that the control input dependent term Lgh(x) is zero. Consider the
subsystem of the (2.22), it appear as,

ẍq =




z̈

φ̈

θ̈

ψ̈


 = b(x) + ∆(x) · u, (3.31)

where

b(x) =




g

θ̇ψ̇ Iy−Ix
Ix

φ̇ψ̇ Iz−Ix
Iy

φ̇θ̇ Ix−Iy
Iz


 , (3.32)

∆(x) =




− 1
m
cθcφ 0 0 0
0 1

Ix
0 0

0 0 1
Iy

0 0 0 1
Iy


 , (3.33)

u =




ft
τx
τy
τz


 , (3.34)

A simplification is made by setting
[
φ θ ψ

]
=
[
p q r

]
. The assumption holds

for smaller angles of movement. Based on the dynamics described in (3.31), the
control input can be selected as (A.8) to be

u = α(x) + β(x) · v. (3.35)
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with

{
α(x) = −∆−1(x) · b(x)

β(x) = ∆−1(x)
(3.36)

The remaining linear dynamics after feedback linearization are an integrator
chain, ẍq = v, which can be controlled by the linear controller:

v = ẍd
q −Kv · (ẋq − ẋd

q)−Kp · (xq − xd
q), (3.37)

where, ẍd
q is the desired acceleration of the inner loop, xd

q and ẋd
q are the desired

trajectories for the position and their velocities. Finally, Kv and Kp, positive
definite matrix, are tunable gains that can be used to place the poles of the
subsequent feedback linearized dynamics on the left hand side plane. Using
the controller described in (3.35) and (3.37) the attitude of the controller can
be stabilized. However, the zero dynamics (internal states x, y), namely states
that are not observable from the output of the previous subsystem still remain
uncontrolled. These dynamics according to (2.22) are:

{
ẍ = − u

m
[s(φ)s(ψ) + c(φ)c(ψ)s(θ)]

ÿ = u
m

[c(ψ)s(φ)− c(φ)s(ψ)s(θ)]
(3.38)

Das et al. [11] suggests a method to control these dynamics by controlling the
desired roll θd and pitch angle φd shown in (3.37) as part of xd

q. It consist
about two simplifying assumptions: small oscillations and to impose ψ = 0.
Consequently we obtain the following simplified system:

{
ẍ = − u

m
θ

ÿ = u
m
φ

(3.39)

As before, there is a chain of two integrators to get to the desired position
variables (x, y). Therefore, the same linear controller used in the inner loop
control is applied to stabilize the outer loop dynamics,
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{
θd = −m

u
[ẍd + k11(ẋd − ẋ) + k12(xd − x)]

φd = m
u

[ÿd + k11(ẏd − ẏ) + k12(yd − y)]
(3.40)

Figure 3.4 shows the control scheme:

xd

yd
φd

θd

ψd

zd z̈

φ̈

θ̈

ψ̈

u

τφ

τθ

τψOuter layer 3

Inner layer 2 FBL layer 1
quadorotor

x, y, z, φ, θ, ψ

Figure 3.4: Dynamic inversion with zero-dynamics stabilization.



Chapter 4

Simulation results

In this chapter we show the results obtained with Matlab/Simulink and we
analyze the differences between the several controllers illustrated above. For
each control, we show the step response of the output variables x, y, z, ψ, then
we show the double circle shape trajectory with the simulated results.

4.1 Linear Quadratic Regulator results
Figure 4.1 shows the step response of the output variables x, y, z, ψ when the
Linear Quadratic Regulator control is used.

41
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(b) y(t) response to a step input.
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(d) ψ(t) response to a step input.

Figure 4.1: Position and yaw response of the Linear Quadratic Regulator to a
step input.

The Table 4.1 shows some characteristic parameters of the step response when
the linear quadrotor regolator control is used.

Table 4.1: Characteristic parameters to a step input.

x(t) y(t) z(t) ψ(t)
Rise time [s] 0.75 0.75 0.72 0.8

Overshoot [m] 4% 4% 4.3% 0%
Settling time [s] 2.3 2.3 2.6 1.75

Figure 4.2 shows the ideal and simulated trajectory for the infinite shape.
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Figure 4.2: Comparing simulated and ideal trajectory with Linear Quadratic
Regulator.

In the next figures are represented the time laws for the x, y variables.
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Figure 4.3: Ideal and simulated timing law with Linear Quadratic Regulator.

4.2 Exact linearization and non-interacting con-
trol via dynamic feedback results

Figure 4.4 shows the step response of the output variables x, y, z, ψ when the
exact linearization and non-interacting control via dynamic feedback is used.



44 Chapter 4 Simulation results

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

t[s]

x
[m

]

Step response x(t)

 

 

Step

Step response

(a) x(t) response to a step input.
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(b) y(t) response to a step input.
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(c) z(t) response to a step input.
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(d) ψ(t) response to a step input.

Figure 4.4: Position and yaw response of the exact linearization and non-
interacting control via dynamic feedback to a step input.

Table 4.2 shows some characteristic parameters of the step response when the
exact linearization and non-interacting control via dynamic feedback is used.

Table 4.2: Characteristic parameters to a step input.

x(t) y(t) z(t) ψ(t)
Rise time [s] 0.4 0.4 0.47 0.31

Overshoot [m] 4% 4% 5.2% 4.2%
Settling time [s] 1.3 1.3 1.55 1.7

Figure 4.5 shows the ideal and simulated trajectory for the double circle shape.
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Figure 4.5: Comparing simulated and ideal trajectory with exact linearization
and non-interacting control via dynamic feedback.

In the next figures are represented the time laws for the x, y variables.
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Figure 4.6: Ideal and simulated timing law with exact linearization and non-
interacting control via dynamic feedback.

4.3 Dynamic inversion with zero-dynamics stabi-
lization results

Figure 4.7 shows the step response of the output variables x, y, z, ψ when the
dynamic inversion with zero-dynamics stabilization control is used.
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(a) x(t) response to a step input.
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(b) y(t) response to a step input.
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(c) z(t) response to a step input.
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(d) ψ(t) response to a step input.

Figure 4.7: Position and yaw response of dynamic inversion with zero-dynamics
stabilization to a step input.

Table 4.3 shows some characteristic parameters of the step response when the
dynamic inversion with zero-dynamics stabilization control is used.

Table 4.3: Characteristic parameters to a step input.

x(t) y(t) z(t) ψ(t)
Rise time [s] 0.2 0.2 0.2 0.15

Overshoot [m] 7% 7% 9% 4%
Settling time [s] 1.4 1.4 1.7 1.5

Figure 4.8 shows the ideal and simulated trajectory for the double circle shape.
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Figure 4.8: Comparing simulated and ideal trajectory with dynamic inversion
with zero-dynamics stabilization.

In the next figures are represented the time laws for the x, y variables.
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Figure 4.9: Ideal and simulated timing law with dynamic inversion with zero-
dynamics stabilization.

4.4 Comparison

Figure 4.10 shows the step response of the output variables x, y, z, ψ when dif-
ferent controllers are used.
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Figure 4.10: Position and yaw response of the three controls to a step input.

Tables 4.4-4.7 show some characteristic parameters of these step response where
D-FBL stand for Dynamic Feedback Linearization and S-FBL stand for Static
Feedback Linearization.

Table 4.4: Characteristic parameters to a step input for the x(t) variable using
the control strategies studied above.

x(t) LQR D-FBL S-FBL
Rise time [s] 0.75 0.4 0.2
Overshoot [m] 4% 4% 7%
Settling time [s] 2.3 1.3 1.4
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Table 4.5: Characteristic parameters to a step input for the y(t) variable using
the control strategies studied above.

y(t) LQR D-FBL S-FBL
Rise time [s] 0.75 0.4 0.2
Overshoot [m] 4% 4% 7%
Settling time [s] 2.3 1.3 1.4

Table 4.6: Characteristic parameters to a step input for the z(t) variable using
the control strategies studied above.

z(t) LQR D-FBL S-FBL
Rise time [s] 0.72 0.47 0.2
Overshoot [m] 4.3% 5.2% 9%
Settling time [s] 2.6 1.55 1.4

Table 4.7: Characteristic parameters to a step input for the ψ(t) variable using
the control strategies studied above.

ψ(t) LQR D-FBL S-FBL
Rise time [s] 0.8 0.31 0.15
Overshoot [m] 0% 4.2% 4%
Settling time [s] 1.75 1.7 1.7

From the data reported in these tables, we can make the following observation.

• The Linear Quadratic Regulator control is slower and it presents a low
value of overshoot.

• The dynamic inversion with zero-dynamics stabilization control is faster
but it presents a higher value of overshoot.

• The exact linearization and non-interacting control via dynamic feedback is
slower than dynamic inversion with zero-dynamics stabilization control be-
cause, after the feedback linearization, the associated linear system presents
the fourfold integrators.

4.5 3D Animation
The Simulink 3D Animation package provides apps for linking Simulink
models and Matlab algorithms to 3D graphics objects. This package can be
used to visualize and verify dynamic system behavior in a virtual reality en-
vironment. Objects are represented in the Virtual Reality Modeling Language
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(VRML), a standard 3D modeling language. You can animate a 3D world by
changing position, rotation, scale, and other object properties during desktop or
real-time simulation [29]. In the following link, https://youtu.be/EXZJWUDSRus,
the result of the simulation in Simulink 3D Animation is shown, when the
dynamic inversion with zero-dynamics stabilization control is used and the de-
sired trajectory is the double circle shape. To realize the desired trajectory has
been used a particular Matlab script. Such Matlab script realizes the desired
trajectory using a trapezoidal velocity profile [31].



Chapter 5

Conclusions and future
developments

In this work, firstly, a mathematical model of a quadrotor dynamics is derived,
using Newton’s and Euler’s laws. Then a linearized version of the model is
obtained, and therefore a linear controller, the Linear Quadratic Regulator, is
derived. After that, two feedback linearization control schemes are designed.
The first one is the dynamic inversion with zero dynamics stabilization, based
on static feedback linearization obtaining a partial linearization of the mathe-
matical model. The second one is the exact linearization and non-interacting
control via dynamic feedback, based on dynamic feedback linearization obtain-
ing a total linearization of the mathematical model. Moreover, these nonlinear
control strategies are compared with the Linear Quadratic Regulator in terms of
performances. Finally, the behavior of the quadrotor under the proposed con-
trol strategies is observed in virtual reality by using the Simulink 3D Animation
toolbox. A future project could be the applying nonlinear control technique, like
feedback linearization, adaptive feedback linearization, sliding mode control, for
the real quadrotor to obtain best performance.
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Appendix A

Input-output Feedback
Linearization

Consider a system with state x ∈ Rn, input u ∈ R and output y ∈ R whose
dynamics are given by

{
ẋ = f(x) + g(x)u

y = h(x)
(A.1)

where f , g and h are sufficiently smooth. We focus now on a single-input, single-
output system, i.e., u, y ∈ R. The derivative of the output y can be expressed as
[17]

ẏ =
∂h

∂x
[f(x) + g(x)u]. (A.2)

The derivative of h along the trajectory of the state x is known as the Lie
Derivate and is denoted as [17]

ẏ =
∂h

∂x
[f(x) + g(x)u] = Lfh(x) + Lgh(x)u. (A.3)

If on the first derivative Lgh(x) = 0, we have

ẏ = y(1) = Lfh(x). (A.4)
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Note that, in this case, the output y remains independent of input u. However,
further higher order derivatives can be considered, specifically,

y(2) = L2
fh(x) + LgLfh(x)u, (A.5)

y(3) = L3
fh(x) + LgL

2
fh(x)u, (A.6)

y(i) = Lifh(x) + LgL
i−1
f h(x)u, (A.7)

and if for a certain i, LgLi−1f h(x)u 6= 0, then the equation (A.7) can be linearized
with full state feedback by,

u =
1

LgL
i−1
f h(x)

(−Lifh(x) + v), (A.8)

in the state region where the inverse 1

LgL
i−1
f h(x)

exists. In this region the feedback
linearized model becomes,

y(i) = v. (A.9)

The value i is defined to be the relative degree of the system. The resulting linear
dynamic system defined in (A.9) can be stabilized by standarùd linear control
techniques and consists of a set of i− 1 integrators up to the required output y.
Moreover, with this linearization a linear controller can be designed such that
the overall system can be proven to be exponentially stable [21].
The concepts used for SISO systems can be also extended to MIMO systems [22].
In the MIMO case, we consider square systems (that is systems with the same
number of inputs and outputs) of the form,

{
ẋ = f(x) + G(x) · u
y = h(x)

, (A.10)
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where x ∈ Rn is a state vector, u ∈ Rm is a control input vector (of components
ui), y ∈ Rm is a vector of system output (of components yi), f , h are smooth
vector fields, and G in an n×m matrix whose columns are smooth vector fields
gi. Input-output linearization of MIMO systems is obtained similarly to the
SISO case, by differentiating the outputs yi until the inputs appear. Assume
that ri is the smallest integer such that at least one of the inputs appears in y(ri)i

then,

y
(ri)
i = Lrif hi(x) +

m∑

j=1

LgjL
ri−1
f hi(x)uj, (A.11)

with LgjL
ri−1
f hi(x) 6= 0 for some x. Performing the above procedure for each

output yi yields



y
(r1)
1
...

y
(rm)
m


 =



Lr1f h1(x)

...
Lrmf hm(x)


+ E(x)u, (A.12)

where the mxm matrix E(x) is defined obviously. If E(x) is invertible for all x,
then, similarly to the SISO case, the input transformation

u = −E−1 ·



Lr1f h1(x)

...
Lrmf hm(x)


 , (A.13)

yields m equations of the simple form

y
(ri)
i = vi. (A.14)

Since the input vi only affects the output yi, (A.13) is called a decoupling control
law, and the invertible matrix E(x) is called decoupling matrix of the system.
The system (A.10), is then said to have relative degree (r1, ...., rm), and the scalar



56 Chapter A Input-output Feedback Linearization

r = r1 + ...+ rm is called the total relative degree of the system.
An interesting case corresponds to the total relative degree being n. In this case,
there are no internal dynamics. With the control law in the form of (A.13), we
thus obtain an input-state linearization of the original nonlinear system. With
the equivalent inputs vi designed as in the SISO case, both stabilization and
tracking can then be achieved for the system without any worry about the sta-
bility of the internal dynamics.
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