3.1. KINEMATICS OF FLUID FLOW 65

Y

Figure 3.1: Sketch of streamlines (left) and a streamtube (right) in a flow field.

3.1.2 Streamlines and Pathlines

In colloquial usage, the word streamline connotes a smoothed flow, as in "streamlined body.” In
fluid mechanics, it has a precise meaning. A streamline is a line in a flow field that is everywhere
tangent to the velocity vector V at each point along the streamline for any instant of time ¢. (See
Figure 3.1.) We can think of the flow field being filled with streamlines, much as a pot is filled
with cooked spaghetti. Like spaghetti, the streamlines never intersect each other because at any
point there can be only one direction of the velocity. Later on we will show how to calculate the
streamlines for some multidimensional flows. For the simple flow of Example 3.1, the streamlines
are straight lines parallel to the z axis.

A streamtube is a surface in the flow formed from streamlines and closed upon itself to form a tube
of variable cross-section, as shown in Figure 3.1. The use of the streamtube is primarily a conceptual
one, helping us to visualize mentally how a flow field might be subdivided into streamtubes that
entirely fill the flow field. Since the fluid does not cross through the surface of the stream tube, we
may think of the stream tubes as flexible, moveable pipes containing the flow inside them.

Both streamlines and streamtubes are instantaneous snapshots of lines and surfaces in the flow
field. As time progresses, these lines and surfaces will move to different locations in space unless the
flow is steady; i.e., does not depend upon time. In steady flow, any snapshot of the flow is identical
to every other one and the streamlines and stream surfaces are fixed in space.

The useful line to define in the Lagrangian description of a flow field is the pathline, which is
the path followed, over later times, of a particular particle identified at an initial time and location.
We can observe a pathline in an experiment by marking a fluid particle with a puff of dye or smoke
and taking a time—exposed picture of the marked fluid. (A common analog is the light path of auto
headlights in a nightime time—exposed photograph.) A pathline is the trajectory of a single fluid
particle.

If a flow is steady, then a streamline and pathline passing through the same point in space are
identical because the velocity field depends only upon position and not time. Experimentally, this is
convenient for the observation of steady streamlines because the set of pathlines formed by a steady
stream (z.e., a closely spaced series of puffs) of dye or smoke follow the same trajectory through
space as the streamline. Even in unsteady flows, the use of dye or smoke markers can be helpful
in visualizing the flow behavior despite the fact that the marked fluid does not denote either a
streamline or a pathline.

3.1.3 The Material Derivative

The standard forms of Newton's law of motion and the laws of thermodynamics apply to a fixed mass
of identified matter whose properties change as time progresses. The natural mode for expressing
these laws is the Lagrangian description of motion because it directly describes the history of an
identified particle. Since we use the Eulerian description for a moving fluid, we need to establish the
Eulerian expression of the rate of change of any property of a fluid particle as it moves through the
flow field. The time rate of change of a fluid property, as measured by an observer moving with the
particle, is called the mamve of that property.

As an example, consxder the Ttate of change of density p of a fluid particle that is located at
position R at time t. During the time interval dt, the particle moves an amount dR = V dt. The
total increment dp in density is the sum of the part due to the time increment dt and that due to
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the spatial increment dR. Using Cartesian coordinates to express the amount of dp,
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To emphasize that the material time derivative includes both spatial and time partial derivatives,
and is not simply the partial time derivative, we will denote it by D/Dt:

D 0

—=(=—+V.V 3.2

Dt <8t i > (32)
Note that D/Dt is a scalar operator so that the material derivative of a scalar variable, such as
density p, for example, is a scalar quantity:

—
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Equation 3.3 may be expressed in terms of Cartesian coordinates as :
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and in terms of cylindrical coordinates as:
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Expressions for the material derivative of a vector property, such as the velocity V, will be treated
in section 4.2.

Example 3.2 A velocity field and density field in Cartesian space is given as:

v = Iy
t

p = Kte ®/L

where L and K are constants having the dimensions of length and density + time, respectively.
Find the material derivative of the density p.

Solution Substituting into Equation 3.3,

2 e £ (0
— kel % <“_LK_te-z/L>

0



Chapter 4

Inviscid Flow

In this chapter we consider a kind of flow, called inviscid flow, that occurs in special, although not
uncommon, circumstances. In such flows the effect of fluid viscosity is so small as to be ignorable and
the resultant flow is much easier to treat analytically than is the case when viscous effects cannot be
ignored. More importantly, it is possible to determine readily significant properties of the flow, such
as the pressure and velocity fields, or even to estimate them by use of simple algebraic relations. It
is easy to develop physical intuition about how an inviscid flow behaves.

We first derive the vector differential equation of motion of an inviscid fluid, called Euler’s
equation. Then we find a scalar integral of this equation, called Bernoulli’s equation, that provides
an algebraic relation between pressure, velocity and position in the earth’s gravitational field. While
Bernoulli’s equation doesn't tell us everything about the flow field, it may provide us with enough
information to find what we need to know to solve a particular practical problem.

Later, in Chapter 6, we will consider the more difficult problem of how to describe a flow when
viscous effects cannot be neglected. For the time being, by treating only inviscid flows we can
develop some familiarity with fluid dynamical principles that will be helpful when we consider the
more general case of viscous flows.

4.1 Criterion for Inviscid Flow

If a fluid were to have zero viscosity, then it could not sustain a shear stress and its flow would be
inviscid exactly. But no fluid has zero viscosity.! For a flow to be regarded as inviscid, the effects of
the shear stresses on the motion must be sufficiently small compared to other influences that they
can be ignored as being negligible. A necessary, but not sufficient, condition for negligible viscous
effects is that a dimensionless parameter characterizing the flow, called the Reynolds number and
denoted by Re, is very large. For the steady flow of a fluid of density p and viscosity p over (or
through) an object of dimension L at a speed V, the Reynolds number is:

Re = A = L2 (4.1)

H v '
where we have used Equation 1.6 to replace p/u by 1/v. Thus the necessary condition for inviscid
flow is:
Re >>1

If the Reynolds number of a flow is not large, then the flow is viscous and cannot be treated as
an inviscid flow. However, it is possible that a large Reynolds number flow can be greatly affected
by viscous effects under some circumstances, such as when the flow comes in contact with solid
boundaries. We cannot always predict when such flows should be regarded as viscous and must be

'Liquid helium-4 at temperatures below 4.2 K flows without friction through small tubes and channels. This flow is a
macroscopic quantum motion of the fluid and is not describable in its entirety by Euler's equation. Under these conditions
helium-4 is called a superfluid.

89
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guided by experimental observation and experience. For the time being, we will note in this chapter
when a flow cannot be treated as inviscid.

4.2 Acceleration of a Fluid Particle

If we wish to express Newton'’s law of motion for a fluid particle in the form, mass x acceleration =
force, we need first an expression for the acceleration of a fluid particle. Since the acceleration of a
fluid particle is the time rate of change of its velocity V,

DV

leration = — : 4.2
acceleration = — (4.2)

where we have used the material time derivative D/Dt of Equatio (3.2 b(/e;‘cause we need the time
rate of change following the fluid particle. In Cartesian coordinates) the acceleration DV /Dt may
be written in component form as:
DV A%
— = —+(V.V)V
Di g TV-V)
du Ju du du

while in cylindrical coordinates the acceleration becomes:
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- = RIS Al ST S AT VA SN
Dt <'at+r8r+7'59+'63 ->‘
Ve Ve  VadVe 0Ve ViVe\.
(WME*T@N‘:& i L
av. _ aV. V,av. v\ . .
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Each of the three components of the acceleration vector requires one time derivative and three
spatial derivatives of a velocity component in its expression, or a total of twelve derivatives needed
for determining the acceleration of a fluid particle. When expressed in cylindrical coordinates (Equa-
tion 4.4), there are two additional, non-derivative terms: the centrifugal acceleration -V,;>/r in the
radial direction and the Coriolis acceleration V,V;/r in the tangential direction. Since it would be
awkward to write out the complete form of the acceleration in terms of these derivatives every time
we need to use it in an equation, we shall use the shorthand notation DV /Dt or 0V /6t + (V- V)V
to indicate the acceleration of a fluid particle.

Example 4.1  The velocity field of a steady incompressible inviscid flow, expressed in cylindrical
coordinates, is:
k k
Vi=—y Vo=—2; Vi=0
T r

)

where k; and k, are constants having the dimension of velocity x length. Derive expressions for the
components of acceleration in the radial, tangential and axial directions.

Solution Substituting the velocity components into Equation 4.4,

DV ki (K 1 (ko> K}+k3
— i, = 0+ —(-= el 22 ==
Dt ; +1'< 7'2>+0+O r(r r3




4.3. EULER'S EQUATION 91

DV . _ kl kQ klk'.’ _
v :
%'“ =0
4.3 Euler’s Equation 4+

We are now equipped to write Newton’s law of motion for a fluid particle. Select a volume element
6V of fluid having a mass p§V. Because —Vp is the pressure force per unit volume of fluid, this
volume element is subject to a pressure force (=Vp) V. It is also acted upon by a gravity force
(p6V)g. Equating the product of mass p&V times the acceleration of a fluid particle to the sum
of the pressure force (—Vp) 6V and the gravity force (p6V) g acting on the particle, we write the

equation of motion as: M L - 2’ F’

(p6V) (%* (V~V)V>

Il

(=Vp)&V + (p&V)g

Dividing by péV, we obtain Euler’s equation:?

A% 1
—+(V-V)V=—2Vp+g (4.5)
ot p

The left side of Euler’s equation is the acceleration of a fluid particle while the right side is the sum
of the forces per unit mass of fluid. Note that the fluid density appears only in the denominator
of the pressure force term. For a given amount of acceleration, a high density liquid fluid particle
requires a much greater pressure gradient Vp than does a low density gas particle. On the other
hand, a droplet of water and one of mercury would fall freely in a vacuum (Vp = 0) with the
same acceleration g despite their different densities. In the absence of any motion (V =0), Euler’s
equation reduces to the equation for static equilibrium, Equation 2.6.

For use in working problems and examples utilizing Cartesian coordinates, we write here the T,y
and z components of Euler's equation, found by evaluating the scalar product of Equation 4.5 times
iz, i, and i., respectively:

Ou  Ov 0u_  Bu 19 o
ot " "or " Vay TVo:. T Loz Bk
Jo , OO B B _l@+ ;
ot " or TVay TV T Toay "B
ow ow ow ow 10p
OB e . _lep 4.6
ot ' +L8y+waz p@z+g]" (4.6)

Example 4.2 A steady inviscid incompressible flow has a velocity field:
u=fz; v=—fy, w=0

where f is a constant having the dimensions of s™'. Derive an expression for the pressure field
p{z,y, z} if the pressure p{0,0,0)} = py and g = —gi,.

2Leonhard Euler (1707-1783) was one of the most prolific mathematicians of all time. He made many contributions to
mechanics, dynamics and hydrodynamics. He proved that Bernoulli's equation is an integral of Euler's equation.
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Solution Substituting the values of the velocity components into Euler’s equation 4.6, we find:

a(fz) . 8(fz) _ _19p, 2 _ _10p

frr vy T Toa T

9(—fy) o-fy) _ 1dp o 10p
_ 19p

Integrating the first of these equations,

£ = —‘(fi)-' +h{y’z}

) 2

and substituting into the second and integrating:

2 oh

ffy = ~ 3y
(fv)?
h = —— k{z
2+ k(z)
The expression for p now becomes:

2o Lt 4 y?) k()
p 2

Substituting this expression for p into the third of Euler’s equations and integrating:

0 = -Z-,
k{z} = -—-gz+c

Substituting k{z} into the expression for p gives:

2

£ :—f—(x2+y2)—g:+c
P 2
Finally, we choose ¢ = po/p so as to satisfy the condition that p {0,0,0} = po:
2

f..
p=po=pg: = p7 (2" +1°)

4.3.1 Constant—Density Flow

If the fluid density is constant throughout the flow field and unvarying with time - an instance
of incompressible flow - it is possible to simplify the form of Euler’s equation by defining a new
independent variable p*:

p=p-—pg-R (4.7)
so that Euler’s equation 4.5 takes the form:

oV
— +(V-V)V
at-i-( V)

Il

|-
——pV(p +rg-R)+g

Il

vy’ (if Vp=0) (4.8)



4.4 Bernoulli’s Equation

To solve an inviscid fluid flow problem utilizing Cartesian coordinates, we must integrate Euler’s
equation to find the four dependent scalar variables u,v,w and p as functions of the independent
variables z,y, z and t (assuming p is a constant). Since we need four scalar equations to find the
four dependent variables, we must append the equation of mass conservation of an incompressible
fluid, Equation 3.17,

vV =0
Ou Ov Ow
— — — = -9
5z 9y T Bz 0 (4.9)

to the three scalar components of Euler’s equation, Equation 4.6. Solving such a complex set of
equations is indeed a formidable problem. No general integral of these equations has yet been found.
Even a numerical solution for an arbitrary three-dimensional unsteady motion requires the use of a
supercomputer. But if we limit our attention to flows of simple geometry and initial and boundary
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conditions, we can find some analytical solutions that are practically useful. Examples are given in
Chapter 11. ,

It was the genius of Bernoulli® to have derived what subsequently proved to be a single scalar
integral of Euler’s equation, one that applies to any inviscid flow provided the fluid density does
not vary arbitrarily, but only in a prescribed manner. This integral, called Bernoulli’s equation, is
often directly applicable to many engineering problems, providing useful, although not complete,
information about the fluid flow. (For a complete description of the fluid flow, we would need four
scalar integrals of Euler’s equation and the mass conservation equation.)

To derive Bernoulli’s equation, we begin by using the vector identity of Equation 1.40 to replace
the term (V- V)V in Equation 4.5 and rearranging the terms to obtain the following form of Euler’s
equation: , ’

A% Ve

a5 +V ( 7
Next we integrate this form of Euler’s equation along a line C in space, whose element of length is
dc, by forming the scalar product of Euler’s equation and dc, then integrating between the points 1
and 2 along the line C:

2 AV4 2 V2 2 2 2
/-a——-dc+/v<— -dc+/ le)-dc—/g—dc:/Vx(VxV)-dc (4.10)
p ot 1 2 1 \P 1 1

Two of the terms in this equation can be integrated directly using Equation 1.46 and Equation 2.7:
%

2 ‘/2
2 2
/g-dc = /V(g-R)-dc
1 1

= g-Ro—g- Ry

1
>+;Vp—g=Vx(VxV)

V2

SN

Il

To integrate other terms, choose the line C to be a streamline; i.e., dc is parallel to V at each point
along the line. To emphasize this choice, we denote the streamline element by ds. By this choice,
the integral on the right side of Equation 4.10 is zero because its integrand is perpendicular to V.
and the scalar product of the integrand with ds is identically zero:

/QVX(VXV)-(IS:O (if ds x V =0) (4.11)
1

where the condition that ds is parallel to V can be expressed as ds x V = 0. The pressure gradient
integral can be evaluated easily if the density does not change along the streamline: *

/ <—Vp> -ds —/ Vp -ds
1 \P P J1

= %(Pz ~ Py (f V- (Vp) =0) (4.12)

where the constancy of density along a streamline is ensured by the condition that the density
gradient Vp is perpendicular to V, or V - (Vp) = 0. Inserting these values for the integrals into

Equation 4.10,
2 2 )
A% Vs m Vi n
e ] il dist = R —  — e R =
/15% S+<2+pg 2> <3+p gl )=0

3Daniel Bernoulli (1700-1782) was both a mathematician, hydrodynamicist and physician. His Hydrodynamica (1738)
explains his "equation” but does not specifically derive it from first principles. The derivation was subsequently given by
Euler.

41t is not sufficient that the flow be incompressible (Dp/ Dt = 0) for the density to be constant along a streamline, unless
the flow is also steady. However, it is sufficient, but not necessary, for the density to be constant everywhere in the flow field
to satisfy its constancy along a streamline.
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Figure 4.1: Water leaving a tap increases in speed as it falls downward through the stationary air,
as described by Bernoulli’s equation.

(if V-(Vp)=0;dsxV =0) (4.13)

This is the form of Bernoulli’s equation for the case of constant density along a streamline. .
" In unsteady flow, the integrand of the first term of Bernoulli’s equation, Equation 4.13, must be
known at all points along the instantaneous streamline in order for the integral to be evaluated. If
the flow is such that the streamlines do not change with time but that the velocity V does, then
0V /0t has the direction of V and ds and the integral may be easy to evaluate. B
In a steady flow the first term of Equation 4.13 is absent and the sum, V2/2+4 p/p — g - R, has
the same value at all points along the same streamline, but not necessarily the same value as points
along a different streamline. -
In our study of hydrostatics, we made use of a convention for a Cartesian coordinate system
that the direction of the z-axis is vertical and opposite to the direction of g. In this convention,

~-g - R = —gz and Bernoulli's equation takes the form: _
2 2
oV Vi g Vi p
o A == — =0
Ot +(2+p+g> <2+p+gl
(f V- (Vp)=0;dsxV=0;,g=—gi.) (4.14)

This form of Bernoulli's equation is convenient for working most problems.

4.4.1 Applications of Bernoulli’s Equation

Bernoulli's equation is very useful in enabling us to understand the behavior of many engineering
flows. In this section we give examples of both steady and unsteady flows of incompressible fluids
that demonstrate the application of Bernoulli’s equation to the flow of fluids.

Fluid Streams

One of the simplest inviscid fluid flows is that of a stream of fluid (such as water) flowing through
a stationary fluid with which it does not mix (such as air). Consider the case of water flowing from
a tap, as illustrated in Figure 4.1. The water leaves the tap with a speed V) as a circular stream of
diameter D,. As it falls, it speeds up and contracts in diameter. Ultimately, the stream becomes so
thin that surface tension forces break it up into droplets. But before this happens, the flow can be
described by applying Bernoulli’s equation 4.14 to the central streamline of the water stream:

2 /2
p2 W7 p,V
=+ = =Sttt
p 5 +g 2 921
On the central streamline the pressure of the water will be the same as that in the atmosphere
at the same height z because the radial acceleration of the water stream is negligible. (We also
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Figure 4.7: Unit vectors for streamline coordinates at a point P on a streamline whose center of
curvature is O.

4.5 Euler’s Equation in Streamline Coordinates

[t is sometimes convenient to choose an orthogonal coordinate system whose local directions are
defined by a streamline of the flow. Called streamline coordinates, the three mutually perpendicular
directions at a point in the flow are determined by the directions of the tangent, normal and binormal
to the streamline passing through the point. This is illustrated in Figure 4.7 for a point P on a
streamline, where the unit vectors lying in these three directions are labeled i, i, and iy, respectively.
The unit normal i, points in the direction of the center of curvature O of the streamline at the point
P, the distance OP being the radius of curvature R. To develop Euler’s equation for this coordinate
system, we will embed a cylindrical coordinate system with center at O and with the z-axis in
the direction of the binormal i,. The point P lies at a radius = = R. The unit vectors of the
streamline and cylindrical coordinates are related by i, = —i,, i = i,, i, = i, the magnitude of
the components of the velocity vector by V; = V,, Vy = V, V. = V;, and the spatial derivatives
by 10/6r = —9/0n, 8/r08 = 9/9s,0/dz = 3/db. Substituting these values into Equation 4.4, and
noting that V, = 0 and V, = 0 at any point on a streamline, the acceleration of a fluid particle in

streamline coordinates is; °
DV av, V2 ov )% A
— _ n _ .n - V— .s _ 9 . 418
Dt < 8t+R>l+<c’)f+ 03>1+<8t>1b )
In the case of steady flow in streamline coordinates, Euler’s equation has an especially simple form:
& :
e — _lg‘l_) +g- in = _lai
R p on p On
oV 10p 10p
Ve = _Z°E P P
Os p Os B p Os
10p ) 10p*

-3 +g-iy= Y (steady flow) (4.19)

There are several aspects of these equations that deserve notice. The first of the equations of
4.19, which expresses the motion in the normal direction, shows that the net force in the direction
in causes the centrifugal acceleration V2/R. The second equation, for motion along the streamline,
‘can be integrated to give Bernoulli’'s equation for steady flow. The third equation of motion in
the direction of the binormal gives a hydrostatic pressure distribution in this direction because the
acceleration in this direction is zero.

1 Although V;, and Vj are zero on the instantaneous streamline passing through P, their time derivatives are not zero in
general, unless the flow is steady. If we expand any component of the velocity in a Taylor series in time, we can see that the
first and higher derivatives in time are not necessarily zero when the first term is zero.
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vVp

Figure 4.8: Sketch of streamlines near a body showing how the direction of the pressure gradient
depends upon the curvature of the streamline.

The equation of motion in the normal direction enables us to determine how the pressure varies
in a steady flow if we know the shape of the streamlines. If gravity has no component in the normal
direction (g - i, = 0), then the pressure decreases in the direction of the center of curvature of the
streamline. For example, consider the steady flow past a streamlined body sketched in Figure 4.8.
At the front of the body, the streamlines curve away from the body and the pressure there must be
higher than the uniform pressure far from the body. On the other hand, at the side of the body the
streamlines follow the convex shape of the body and the pressure at the side must be less than that
far away. While such a description of the pressure distribution in this flow is qualitatively correct,
a quantitative calculation of the pressure in the flow cannot be obtained easily from the streamline
form of Euler’s equation, Equation 4.19, except for very simple flows. .-
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4.6 Inviscid Flow in Noninertial Reference Frames

In analyzing fluid flows it is sometimes convenient to use a coordinate system tied to a reference frame
that is not inertial; i.e., one in which the acceleration measured by an observer in the noninertial
reference frame is different from that measured by an observer in the inertial reference frame. Typical
examples of such noninertial reference frames would be a reference frame fixed in a booster rocket
that is accelerating upward from its launching pad or a rotating reference frame fixed to the rotor
of a turbomachine. In such instances, the expressions for Euler’s and Bernoulli’s equations need to
be modified to take into account the motion of the noninertial reference frame.

We commonly regard the laboratory reference frame as an inertial reference frame when describ-
ing fluid flow in laboratory experiments. However, because the earth rotates about its axis, the
laboratory reference frame is not strictly inertial but can be regarded as such for flows having small
length and time scales typical of engineering systems. For large scale flows that change slowly with
time, such as that of the atmosphere or the ocean, it is necessary to take into account the earth’s
rotational speed when using a reference frame fixed to the earth. If the angular velocity of a rotating
system is sufficiently high, the use of noninertial reference frames may require corrections that are
important even for laboratory scale flows.

In this section we develop the modifications to the equations of inviscid flow that are required in
the use of noninertial reference frames for two simple cases. The first of these is that of a translating
(but not rotating) reference frame that is accelerating. The second is that of a reference frame that
is rotating at a steady angular speed about an axis whose direction is fixed but is otherwise not
being translated with respect to the inertial reference frame. These two examples suffice to cover
most applications of engineering importance.

4.6.1 Translating, Accelerating Reference Frame

Consider a noninertial reference frame that is translating with respect to the inertial reference
frame. (Translation means that the coordinate system axes do not change direction in inertial
space.) Denote the position and velocity of a fluid particle in the noninertial reference frame by
R and V, respectively, to distinguish them from the position R and velocity V in the inertial
reference frame. (Because we are dealing with nonrelativistic velocities, time ¢ will be the same in



