Chapter 9
Angular momentum, Part Il
(General L)

In Chapter 8, we discussed situations where the direction of the vector L remained
constant, and only its magnitude changed. In this chapter, we will look at more
general situations where the direction of L is allowed to change. The vector
nature of L will prove to be vital here, and we will arrive at all sorts of strange
results for spinning tops and such things. This chapter is rather long, alas, but the
general outline is that the first three sections cover general theory, then Section 9.4
introduces some actual physical setups, and then Section 9.6 begins the discussion
of tops.

9.1 Preliminaries concerning rotations
9.1.1 The form of general motion

Before getting started, we should make sure we’re all on the same page concerning
a few important things about rotations. Because rotations generally involve three
dimensions, they can often be hard to visualize. A rough drawing on a piece of
paper might not do the trick. For this reason, this chapter is one of the more
difficult ones in this book. But to ease into it, the next few pages consist of some
definitions and helpful theorems. This first theorem describes the general form
of any motion. You might consider it obvious, but it’s a little tricky to prove.

Theorem 9.1 (Chasles’theorem) Consider a rigid body undergoing arbitrary
motion. Pick any point P in the body. Then at any instant (see Fig. 9.1), the
motion of the body can be written as the sum of the translational motion of P,
plus a rotation around some axis (which may change with time) through P.!

Proof: The motion of the body can be written as the sum of the translational
motion of P, plus some other motion relative to P (this is true because relative
coordinates are additive quantities). We must show that this latter motion is a
rotation. This seems quite plausible, and it holds because the body is rigid; that is,

! In other words, a person at rest with respect to a frame whose origin is P, and whose axes are
parallel to the fixed-frame axes, sees the body undergoing a rotation around some axis through P.

Fig. 9.1
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all points keep the same distances relative to each other. If the body weren’t rigid,
then this theorem wouldn’t be true.

To be rigorous, consider a spherical shell fixed in the body, centered at P. The
motion of the body is completely determined by the motion of the points on this
sphere, so we need only examine what happens to the sphere. Because distances
are preserved in the rigid body, the points on the sphere must always remain the
same radial distance from P. And because we are looking at motion relative to P,
we have therefore reduced the problem to the following: In what manner can a
rigid sphere transform into itself? We claim that any such transformation has the
property that there exist two points that end up where they started.” These two
points must then be diametrically opposite points (assuming that the whole sphere
doesn’t end up back where it started, in which case every point ends up where it
started), because distances are preserved; given one point that ends up where it
started, the diametrically opposite point must also end up where it started, to
maintain the distance of a diameter.

If this claim is true, then we are done, because for an infinitesimal transfor-
mation, a given point moves in only one direction, because there is no time to do
any turning. So a point that ends up where it started must have remained fixed
for the whole (infinitesimal) time. Therefore, all the points on the diameter join-
ing the two fixed points must also have remained fixed the whole time, because
distances are preserved. So we are left with a rotation around this axis.

This “two points ending up where they started” claim is quite believable,
but nevertheless tricky to prove. Claims with these properties are always fun to
think about, so I've left this one as a problem (Problem 9.2). Try to solve it on
your own. ]

We will invoke this theorem repeatedly in this chapter (often without bothering
to say so). Note that we are assuming that P is a point in the body, because we
used the fact that P keeps the same distances from other points in the body.

REMARK: A situation where this theorem isn’t so obvious is the following (this setup contains
only rotation, with no translation of the point P). Consider an object rotating around a fixed
axis, the stick shown in Fig. 9.2. But now imagine grabbing the stick and rotating it around
some other axis (the dotted line shown). It isn’t immediately obvious that the resulting motion
is (instantancously) a rotation around some new axis through the point P (which remains fixed).
But indeed it is. We’ll be quantitative about this in the “Rotating sphere” example later in this
section. &

9.1.2 The angular velocity vector

It is extremely useful to introduce the angular velocity vector, w, which is defined
as the vector that points along the axis of rotation, and whose magnitude equals

2 This claim is actually true for any transformation of a rigid sphere into itself, but for the present
purposes we are concerned only with infinitesimal transformations, because we are looking only
at what happens at a given instant in time.
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the angular speed. The choice of the two possible directions along the axis is given
by the right-hand rule: if you curl your right-hand fingers in the direction of the
spin, then your thumb points in the direction of w. For example, a spinning record
has @ perpendicular to the record, through the center (as shown in Fig. 9.3),° with
its magnitude equal to the angular speed, . The points on the axis of rotation
are the ones that (instantancously) do not move. Of course, the direction of
may change over time, so the points that were formerly on the axis may now be
moving.

REMARKS:

1. If you want, you can break the mold and use the left-hand rule to determine w, as long as
you use it consistently. The direction of @ will be the opposite, but that doesn’t matter,
because w isn’t really physical. Any physical result (for example, the velocity of a particle,
given below in Theorem 9.2) will come out the same, independent of which hand you
(consistently) use.

When studying vectors in school,
You’ll use your right hand as a tool.
But look in a mirror,

And then you’ll see clearer,

It’s just like the left-handed rule.

2. The fact that we can specify a rotation by specifying a vector w is a peculiarity to three
dimensions. If we lived in one dimension, then there would be no such thing as a rotation.
If we lived in two dimensions, then all rotations would take place in that plane, so we
could label a rotation by simply giving its speed, w. In three dimensions, rotations take
place in (g) = 3 independent planes. And we choosc to label these, for convenience, by
the directions orthogonal to these planes, and by the angular speed in each plane. If we
lived in four dimensions, then rotations could take place in (g) = 6 planes, so we would
have to label a rotation by giving 6 planes and 6 angular speeds. Note that a vector, which
has four components in four dimensions, would not do the trick. &

In addition to specifying the points that are instantaneously motionless, @
also easily produces the velocity of any point in the rotating object. Consider
the situation where the axis of rotation passes through the origin, which we’ll
generally assume to be the case in this chapter, unless otherwise stated. Then we
have the following theorem.

Theorem 9.2 Given an object rotating with angular velocity w, the velocity
of a point at position r is given by

V=w XT. 9.1

Proof: Drop aperpendicular from the point in question (call it P) to the axis w.
Let O be the foot of the perpendicular, and let r’ be the vector from Q to P

3 It’s actually meaningless to say that @ passes through the center of the record, because you can
draw the vector anywhere, and it’s still the same vector, as long as it has the correct magnitude and
direction. Nevertheless, it’s customary to draw @ along the axis of rotation and to say things like,
“An object rotates around @ . ..”

Fig. 9.3
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(see Fig. 9.4). From the properties of the cross product (see Appendix B), v =
@ X r is orthogonal to w, r, and also r’ because r’ is a linear combination of @
and r. Therefore, the direction of v is correct; it is always orthogonal to @ and
r’, so it describes circular motion around the axis w. Also, by the right-hand rule
in the cross product (or the left-hand rule, if you had chosen to be different and
defined w that way), v has the proper orientation around @, namely into the page
at the instant shown. And since

[v] = |@||r|sin @ = or/, 9.2)

we see that v has the correct magnitude, because wr’ is the speed of the circular
motion around @. So v is indeed the correct velocity vector. (If we have the
special case where P lies along w, then r is parallel to w, so the cross product
gives a zero result for v, as it should.) ]

We’ll make good use of Eq. (9.1) and apply it repeatedly throughout this
chapter. Even if'it’s hard to visualize what’s going on in a given rotation, all you
have to do to find the speed of any point is calculate the cross product @ x r.
Conversely, if the speed of every point in a body is given by v = X r, then the
body must be undergoing a rotation with angular velocity w, because all points
on the axis  are motionless, and all other points move with the proper speed for
this rotation.

A very nice thing about angular velocities is that they simply add. Stated more
precisely:

Theorem 9.3 Let coordinate systems Sy, S», and S3 have a common origin.
Let Sy rotate with angular velocity w1 » with respect to Sy, and let S, rotate with
angular velocity ;3 with respect to S3. Then S| rotates (instantaneously) with
angular velocity

w3 =w)+ w3 9.3)

with respect to S3.

Proof: Ifw;, and wy3 point in the same direction, then the theorem is clear;
the angular speeds just add. If, however, they don’t point in the same direction,
then things are a bit harder to visualize. But we can prove the theorem by making
abundant use of the definition of w.

Pick a point P; at rest in S7. Let r be the vector from the origin to Py. The
velocity of Py (relative to a very close point P; at rest in Sy) due to the rotation of
Sy around w12 is Vp,p, = w12 x r. The velocity of P; (relative to a very close
point P3 at rest in S3) due to the rotation of S> around >3 is Vp,p; = w23 X1,
because P; is also located essentially at position r. Therefore, the velocity of Py
relative to P3 is Vp,p, + Vp,p; = (w12 + ®23) x r. This holds for any point
Py atrest in Sy, so the frame S rotates with angular velocity (@12 4+ @2 3) with
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respect to S3. We see that the proof basically comes down to the facts that (1) the
linear velocities just add, as usual, and (2) the angular velocities differ from the
linear velocities by a cross product with r. |

If w; 2 is constant in Sy, then the vector w13 = @12 + w3 will change with
respect to S3 as time goes by, because w1 2, which is fixed in S, is changing with
respect to S3 (assuming that @ and wy3 aren’t parallel). But at any instant,
w1 3 may be obtained by adding the present values of @ » and w; 3. Consider the
following example.

Example (Rotating sphere): A sphere rotates with angular speed w3 around a
stick that initially points in the z direction. You grab the stick and rotate it around the
¥ axis with angular speed w. What is the angular velocity of the sphere, with respect
to the lab frame, as time goes by?

Solution: Inthe language of Theorem 9.3, the sphere defines the Sy frame; the stick
and the y axis define the S, frame; and the lab frame is the S3 frame. The instant after
you grab the stick, we are given that @] 2 = w3Z, and w23 = wpy. Therefore, the
angular velocity of the sphere with respect to the lab frame is w13 = w12 + wp3 =
®3Z + w1y, as shown in Fig. 9.5. Convince yourself that the combination of these
two rotations yields zero motion for the points along the line of @ 3. As time goes
by, the stick (and hence w| ) rotates around the y axis, so w1 3 = @12 + @y 3 traces
out a cone around the y axis, as shown.

Remark:  Note the different behavior of ;3 for a slightly different statement of the
problem: Let the sphere initially rotate with angular velocity w,y around a stick, and then
grab the stick and rotate it with angular velocity w3Z. For this situation, @) 3 initially
points in the same direction as in the original statement of the problem (it initially equals
w2y + w3z). But as time goes by, it is now the horizontal component (defined by the stick)
of @1 3 that changes, so w13 = w12 + w23 traces out a cone around the z axis, as shown
inFig. 9.6. &

An important point concerning rotations is that they are defined with respect
to a coordinate system. It makes no sense to ask how fast an object is rotating with
respect to a certain point, or even a certain axis. Consider, for example, an object
rotating with angular velocity @ = w3Z with respect to the lab frame. Saying only,
“The object has angular velocity @ = w3z,” is not sufficient, because someone
standing in the frame of the object would measure @ = 0, and would therefore be
very confused by your statement. Throughout this chapter, we’ll try to remember
to state the coordinate system with respect to which  is measured. But if we
forget, the default frame is the lab frame.

This section was definitely a bit abstract, so don’t worry too much about it
at the moment. The best strategy is perhaps to read on, and then come back
for a second pass after digesting a few more sections. At any rate, we’ll be

Fig. 9.5
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discussing many other aspects (probably more than you’d ever want to know)
of w in Section 9.7.2, so you’re assured of getting a lot more practice with it.
For now, if you want to strain some brain cells thinking about @ vectors, you are
encouraged to solve Problem 9.3, and also to look at the three given solutions.

9.2 The inertia tensor

Given an object undergoing general motion, the inertia tensor is what relates the
angular momentum, L, to the angular velocity, w. This tensor (which is just a
fancy name for “matrix” in this context) depends on the geometry of the object,
as we’ll see. In finding the L due to general motion, we’ll follow the strategy of
Section 8.1. We’ll first look at the special case of rotation around an axis through
the origin, then we’ll look at the most general possible motion.

9.2.1 Rotation around an axis through the origin

The three-dimensional object in Fig. 9.7 rotates with angular velocity @. Consider
a little piece of the body, with mass dm and position r. The velocity of this piece is
vV = @ Xxr, s0 its angular momentum (relative to the origin) isr xp = (dm)r xv =
(dm)r x (@ x r). The angular momentum of the entire body is therefore

L:/rx (w X 1)dm, 9.4)

where the integration runs over the volume of the body. In the case where the rigid
body is made up of a collection of point masses m;, the angular momentum is

L=> mr x (@xr). 9.5)

The double cross product in Egs. (9.4) and (9.5) looks a bit intimidating, but it’s
actually not so bad. First, we have

X V 1z
WXTYr=| w wy w3
x y z

= (w2z — w3Y)X + (W3x — W12)§ + (V1Y — W2X)Z. 9.6)

We’re using the notation w; instead of wy, etc., because there are already enough
x, v, z’s floating around here. The double cross product is then

A A A

X y z
rx (wxr)= X b% z
(w2z —w3y) (w3x —wiz) (W1y — wyx)

= <a)1(y2 +2%) — woxy — a)3zx>§
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+ (wz(Zz +x%) — w3yz — wlxy>§’
+ <a)3 &% +1?) — w1zx — a)zyz)i. 9.7)

The angular momentum in Eq. (9.4) may therefore be written in the concise
matrix form,

L f(yz—l—zz) —fxy —fzx w1
Ly | = -[x  [E+xD =[xz w2
Ls —fzx —fyz f()c2 +?) w3
Ly Ixy Iy: w]
=\ I Ly I w2
\ Ly Izy L w3
= lw. (9.8)

For the sake of clarity, we have not bothered to write the dm part of each integral
(and we’ll continue to drop it for most of the remainder of this section). The
matrix I is called the inertia tensor. If the word “tensor” scares you, just ignore
it. I is simply a matrix. It acts on a vector (the angular velocity) and produces
another vector (the angular momentum).

Example (Cube with origin at corner): Calculate the inertia tensor for a solid
cube of mass M and side length L, with the coordinate axes parallel to the edges of
the cube, and the origin at a corner (sce Fig. 9.8).

Solution: Due to the symmetry of the cube, there are only two integrals we need
to calculate in Eq. (9.8). The diagonal entries are all equal to [ (% + z2) dm, and the
off-diagonal entries are all equal to — [ xy dm. Withdm = p dxdy dz,and p = M /L3,
these two integrals are

L pL pL L L 2
[ / / (y2+22)pdxdyd2=,0L2/ yzdy+pL2/ 22 dz = M1L?,
0o Jo Jo 0 0 3

L pL pL L L MLZ
—/ / / xypdxdydz:—pL[ xdx/ yvdy = ———. (9.9
0o Jo Jo 0 0 4

Therefore,

2/3 —1/4 —1/4
I=M?*| —1/4 23 —1/4 |. (9.10)
—1/4 —1/4 23

Having found I, we can calculate the angular momentum associated with any given
angular velocity. If, for example, the cube is rotating around the z axis with angu-
lar speed w, then we can apply the matrix I to the vector (0,0, w) to find that the
angular momentum is L = MLza)(—l /4,—1/4,2/3). Note the somewhat odd fact

[
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that L and Ly, are nonzero, even though the rotation is only around the z axis. We’ll
discuss this issue after the following remarks.

REMARKS:

1.

The inertia tensor in Eq. (9.8) is a rather formidable-looking object. You will therefore
be very pleased to hear that you rarely have to use it. It’s nice to know that it’s there if
you need it, but the concept of principal axes (discussed in Section 9.3) provides a way
to avoid using the inertia tensor (or more precisely, to greatly simplify it) and is therefore
much more useful in solving problems.

2. 1 is a symmetric matrix, which is a fact that will be important in Section 9.3. There are

therefore only six independent entries, instead of nine.

3. In the case where the rigid body is made up of a collection of point masses m;, the entries

in the matrix are just sums. For example, the upper left entry is Y m,-(yi2 + zl-z).

4. T depends only on the geometry of the object, and not on .
5. To construct an I, you not only need to specify the origin, you also need to specify the x, y,

z axes of your coordinate system. And the basis vectors must be orthogonal, because the
cross product calculation above is valid only for an orthonormal basis. If someone else
comes along and chooses a different orthonormal basis (but the same origin), then her I
will have different entries, as will her w, as will her L. But her @ and L will be exactly the
same vectors as your @ and L. They will appear different only because they are written
in a different coordinate system. A vector is what it is, independent of how you choose to
look at it. If you each point your arm in the direction of what you calculate L to be, then
you will both be pointing in the same dircction.

6. For the case of a pancake object rotating in the x-y plane, we have z = 0 for all points in

the object. And @ = w3z, so w; = wy = 0. The only nonzero term in the L in Eq. (9.8)
is therefore Ly = f (x2 4+ yz) dm w3, which is simply the L, = L w result we found in
Eq.(8.5). &

This is all perfectly fine. Given any rigid body, we can calculate I (relative

to a given origin, using a given set of axes). And given w, we can then apply I
to it to find L. But what do these entries in I really mean? How do we interpret

the

1S

m? Note, for example, that w3 appears not only in L3 in Eq. (9.8), but also in

Ly and Ly. But w3 is relevant to rotations around the z axis, so what in the world

t doing in L1 and L,? Consider the following examples.

Example 1 (Point mass in the x-y plane): Consider a point mass m traveling
in a circle of radius  (centered at the origin) in the x-y plane, with frequency w3, as
shown in Fig. 9.9. Using ® = (0,0, 3), x2 —i—yz = r2, and z = 0 in Eq. (9.8) (with
a discrete sum of only one object, instead of the integrals), the angular momentum
with respect to the origin is

L = (0,0, mrws). .11

The z component is mr(rw3) = mro, as it should be. And the x and y components
are zero, as they should be. This case where w1 = wy = 0 and z = 0 is simply
the case we studied in Chapter 8, as mentioned in Remark 6 above.
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Example 2 (Point mass in space): Consider a point mass m traveling in a circle
ofradius r, with frequency w3. But now let the circle be centered at the point (0, 0, zg),
with the plane of the circle parallel to the x-y plane, as shown in Fig. 9.10. Using
@ = (0,0, w3), x2 +y2 = r2, and z = zg in Eq. (9.8), the angular momentum with
respect to the origin is

L = mws(—xzq, —yzq, 1°). 9.12)

The z component is mrv, as it should be. But surprisingly, we have nonzero L; and
L7, even though the mass is just rotating around the z axis. L. does not point along @
here. What’s going on?

Consider an instant when the mass is in the y-z plane, as shown in Fig. 9.10. The
velocity of the mass is then in the —x direction. Therefore, the particle most certainly
has angular momentum around the y axis, as well as the z axis. Someone looking at a
split-second movie of the mass at this point can’t tell whether it’s rotating around the
y axis, the z axis, or undergoing some complicated motion. But the past and future
motion is irrelevant; at any instant in time, as far as the angular momentum goes, we
are concerned only with what is happening at this instant.

At this instant, the angular momentum around the y axis is Ly = —mzgv, because
z¢ 1s the distance from the y axis, and the minus sign comes from the right-hand rule.
Using v = w3r = w3y, we have Ly = —mzgw3y, in agreement with Eq. (9.12). Also,
at this instant, L1 is zero, because the velocity is parallel to the x axis. This agrees
with Eq. (9.12), since x = 0. As an exercise, you can check that Eq. (9.12) is also
correct when the mass is at a general point (x, , zg).

We see that, for example, the /,; = — [ vz entry in I tells us how much the w3
component of the angular velocity contributes to the L, component of the angular
momentum. And due to the symmetry of I, the Iy, = I, entry in I also tells us how
much the wy component of the angular velocity contributes to the L3 component of
the angular momentum. In the former case, if we group the product of the various
quantities as — [ (w3y)z, we see that this is simply the appropriate component of the
velocity times the distance from the y axis. In the latter case with — [(wpz)y, it is
the opposite grouping. But in both cases there is one factor of y and one factor of z,
hence the symmetry in L.

REMARK: For a point mass, L is actually more easily obtained by just calculating L =
r x p. The result for the instant shown in Fig. 9.10 is drawn in Fig. 9.11, where it is clear
that L has both y and z components, and thus also clear that L doesn’t point along . For a
more complicated object, the tensor I is generally used, because it is necessary to perform
the integral of the L = r x p contributions over the entire object, and the tensor has this
integral built into it. At any rate, whatever method you use, you will find that except in
special circumstances (see Section 9.3), L. doesn’t point along .

Consider the vector of L,

And that of @ as well.

The erroneous claim

That they must aim the same

Is a view that you’ve got to dispel! &

-
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Example 3 (Two point masses): Let’s now add another point mass m to the

N previous example. Let it travel in the same circle, at the diametrically opposite point,
___________ as shown in Fig. 9.12. Using w = (0,0, w3), x2 +y2 = r2, and z = z( in Eq. (9.8),
— Zop-r--om you can show that the angular momentum with respect to the origin is
rD
2

L = 2mw3(0,0,r°). (9.13)

Y Since v = wjr, the z component is 2mrv, as it should be. And L and L, are zero,

unlike in the previous example, because these components of the L’s of the two

X particles cancel. This occurs because of the symmetry of the masses around the z
axis, which causes the /;x and Iz entries in the inertia tensor to vanish; they are each
Fig. 9.12 the sum of two terms, with opposite x values, or opposite y values. Alternatively, you
can just note that adding on the mirror-image L vector in Fig. 9.10 produces canceling

x and y components.

Let’s now look at the kinetic energy of our object, which is rotating around an
axis passing through the origin. To find this, we must add up the kinetic energies
of all the little pieces. A little piece has energy (dm)v?/2 = dm|w x r|*/2.
Therefore, using Eq. (9.6), the total kinetic energy is

1

T=3 f <(a)22 — w3)? + (w3x — w12)* + (1Y — wzx)2> dm.  (9.14)

Multiplying this out, we see (after a little work) that we can write T as

{ [0?2+2%)  —[xy — [zx w]
T = 3 (w1, w2, w3) - — [xy [ +x%) — [yz )
— [z —[yz [P+ 3
1 1
:Ew-lwziw-L. (9.15)

If @ = w3z, then this reduces to T = Izza)g /2, which agrees with the result in
Eq. (8.8), with a slight change in notation.

9.2.2 General motion

el

How do we deal with general motion in space? That is, what if an object is both
translating and rotating? For the motion in Fig. 9.13, the various pieces of mass
aren’t traveling in circles around the origin, so we can’t write v = @ X r, as we
did prior to Eq. (9.4).

To determine L (relative to the origin), and also the kinetic energy 7', we will
use Theorem 9.1 to write the motion as the sum of a translation plus a rotation.
In applying the theorem, we may choose any point in the body to be the point
Fig. 9.13 P in the theorem. However, only in the case where P is the object’s CM can we
extract anything useful, as we’ll see. The theorem then says that the motion of

-
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the body is the sum of the motion of the CM plus a rotation around the CM. So
let the CM move with velocity V, and let the body instantaneously rotate with
angular velocity @ around the CM (that is, with respect to the frame whose origin
is the CM, and whose axes are parallel to the fixed-frame axes)."

Let the position of the CM relative to the origin be R = (X, Y,Z), and let
the position of a given piece of mass relative to the CM be v’ = (x',)/,Z’). Then
r = R+’ is the position of a picce of mass relative to the origin (see Fig. 9.14).
Let the velocity of a piece of mass relative to the CM be v/ (so vV = @' x 1/).
Then v = V + v/ is the velocity relative to the origin.

Let’s look at L first. The angular momentum is

L = frxvdm:/(R+r/)x <V+(w/xr’)>dm

:/(RxV)dm+/r'x (@ xr)dm
— MR x V) + Lo, (9.16)

where the cross terms vanish because the integrands are linear in r’. More pre-
cisely, the integrals involve [r’'dm, which is zero by definition of the CM
(because [ r' dm/M is the position of the CM relative to the CM, which is zero).
Lcwm is the angular momentum relative to the CM.>

We see that as in the pancake case in Section 8.1.2, the angular momentum
(relative to the origin) of a body can be found by treating the body like a point
mass located at the CM and finding the angular momentum of this point mass
relative to the origin, and by then adding on the angular momentum of the body
relative to the CM. Note that these two parts of the angular momentum need not
point in the same direction, as they did in the case of the pancake moving in the
x-y plane.

Now let’s look at 7. The kinetic energy is

1 1
T = f—vzdm:/§|V+v/|2dm

2
1 1
:/EVzdm+/§v’2dm

1 1
= 5MV2+,/§|(0/ x r'|% dm

1
2

1
MV? + Ew/ - Lewms, (9.17)

4 It’s not necessary to put the prime on the @ here, because the angular velocity vector in the CM
frame is the same as in the lab frame. But we’ll use the prime just because we’ll have primes on
the other CM quantities below.

5 By this, we mean the angular momentum as measured in the coordinate system whose origin is the
CM, and whose axes are parallel to the fixed-frame axes.
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where the last line follows from the steps leading to Eq. (9.15). The cross term
[V-vdn= [V (0 xr')dm vanishes because the integrand is linear in r’
and thus yields a zero integral, by definition of the CM. As in the pancake case
in Section 8.1.2, the kinetic energy of a body can be found by treating the body
like a point mass located at the CM, and by then adding on the kinetic energy of
the body due to the rotation around the CM.

9.2.3 The parallel-axis theorem

Consider the special case where the CM rotates around the origin with the same
angular velocity at which the body rotates around the CM (see Fig. 9.15), that is,
V = @’ x R. This can be achieved, for example, by piercing the body with the
base of arigid “1”” and then rotating the T and the body around the (fixed) line of
the “upper” part of the T (the origin must pass through this line). We then have the
nice situation where all points in the body travel in fixed circles around the axis
of rotation. Mathematically, this follows fromv =V+Vv =o' x R+ ' x1r' =
' x r. Dropping the prime on w, Eq. (9.16) becomes

L:MRx(wa)—i—/r/x(wxr/)dm (9.18)

Expanding the double cross products as in the steps leading to Eq. (9.8), we can
write this as

L Y2472 —XY —7X W)
L, | =M XY ZZ+Xx? -vz @)
L3 —7ZX -YZ  X*+47Y? @3
f(y/z +Z/2) _fx/y/ —fz’x’ ]
+ _ fx/y/ f(le + xzz) _ fylz/ )
_ fz’x/ _ fy/z/ /(x/z +y/2) @3
= (IR + Icm)w. (9.19)

This is the generalized parallel-axis theorem. It says that once you’ve calculated
Iy relative to the CM, then if you want to calculate I relative to another point,
you simply have to add on the Ig matrix, obtained by treating the object like a
point mass at the CM. So you have to compute six extra numbers (there are six,
instead of nine, because the Iz matrix is symmetric) instead of just the one MR>
in the parallel-axis theorem in Chapter &, given in Eq. (8.13). Problem 9.4 gives
another derivation of the parallel-axis theorem, without mentioning the angular
velocity.

REMARK:  The name “parallel-axis” theorem is actually a misnomer here. The inertia tensor
isn’t associated with one particular axis, as the moment of inertia in Chapter 8 was. The moment
of inertia is just one of the diagonal entries (associated with a given axis) in the inertia tensor.
The inertia tensor depends on the entire coordinate system. So in that sense we should call this
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the “parallel-axes” theorem, because the coordinate axes in the CM frame are assumed to be
parallel to the ones in the fixed frame. At any rate, the point is that the parallel-axis theorem
in Chapter 8 dealt with shifting the axis, whereas the present theorem deals with shifting the
origin (and hence all three axes in general). &

As far as the kinetic energy goes, if @ and ' are equal, so that V = @’ x R,
then Eq. (9.17) gives (dropping the prime on @)

1 1
T = Mlo x R|)? + f Sl v'|% dm. (9.20)
Performing the steps leading to Eq. (9.15), this becomes

1 1
T = Ew (IR +Icmw = Ew - L. 9.21)

9.3 Principal axes

The cumbersome expressions in the previous section may seem a bit unsettling,
but it turns out that usually we can get by without them. The strategy for avoiding
all of the above mess is to use the principal axes of a body, which we will define
below.

In general, the inertia tensor I in Eq. (9.8) has nine nonzero entries, of which
six are independent due to the symmetry of I. In addition to depending on the
origin chosen, the inertia tensor depends on the set of orthonormal basis vectors
chosen for the coordinate system; the x, y, z variables in the integrals in I depend,
of course, on the coordinate system they’re measured with respect to. Given a
blob of material, and given an arbitrary origin,® any orthonormal set of basis
vectors is usable, but there is one special set that makes all our calculations
very nice. These special basis vectors are called the principal axes. They can be
defined in various equivalent ways:

e The principal axes are the orthonormal basis vectors for which I is diagonal, that is,
for which’

L 0 0
I= 0 L 0 [|. (9.22)
0 0 I3

11, Ip, and I3 are called the principal moments. For many objects, it is quite obvious
what the principal axes are. For example, consider a uniform rectangle in the x-y plane.
Pick the origin to be the CM, and let the x and y axes be parallel to the sides. Then the

% The CM is often chosen to be the origin, but it need not be. There are principal axes associated
with any origin.

7 Technically, we should be writing /1] or Iy instead of /1, etc., in this matrix, because the one-
index object /7 looks like the component of a vector, not a matrix. But the two-index notation gets
cumbersome, so we’ll be sloppy and just use /1, etc.
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principal axes are clearly the x, y, and z axes, because all the off-diagonal elements
in the inertia tensor in Eq. (9.8) vanish, by symmetry. For example, Iy, = — [ xydm
equals zero, because for every point (x, y) in the rectangle, there is a corresponding point
(—x, »), so the contributions to [ xy dm cancel in pairs. Also, the integrals involving z
are identically zero, because z = 0.

e A principal axis is an axis @ for which I&® = I®. That is, a principal axis is a special

direction with the property that if @ points along it, then so does L. The principal axes
of an object are then the orthonormal set of three vectors @1, @», @3 with the property
that

Io; =@, 1wy = hHhay, o3 = I3@3. (9.23)

The three statements in Eq. (9.23) are equivalent to Eq. (9.22), because the veetors @1,
@®>, and @3 are simply (1,0, 0), (0,1, 0), and (0,0, 1) in the frame in which they are the
basis vectors.

Consider an object rotating around a fixed axis with constant angular speed. Then this
axis is a principal axis if there is no need for any torque. So in some sense, the object is
“happy” to spin around a principal axis. A set of three orthonormal axes, each of which
has this property, is by definition what we call a set of principal axes.

This definition of a principal axis is equivalent to the previous definition for the
following reason. Assume that the object rotates around a fixed axis @ for which
L =1I® = I1®1, as in Eq. (9.23). Then since @ is assumed to be fixed, we see that L
is also fixed. Therefore, T = dL/dt = 0.

Conversely, if the object is rotating around a fixed axis @, and if T = dL/dt = 0,
then we claim that L points along @1 (that is, L. = I1®1). This is true because if L. does
not point along @1, then imagine painting a dot on the object somewhere along the line
of L. A little while later, the dot will have rotated around the fixed vector @1. But the
line of L must always pass through the dot, because we could have rotated our axes
around @; and started the process at a slightly later time (this argument relies on @1
being fixed). Therefore, we see that L has changed, in contradiction to the assumption
that dL/dr = 0. Hence, L must in fact point along @1.

For a rotation around a principal axis @, the lack of need for any torque means that
if the object is pivoted at the origin, and if the origin is the only place where any
force is applied (which implies that there is zero torque around it), then the object can
undergo rotation with constant angular velocity w. If you try to set up this scenario with
a nonprincipal axis, it won’t work.

Example (Square with origin at corner): Consider the uniform square in
Fig. 9.16. In Appendix E, we show that the principal axes are the dotted lines drawn
(and also the z axis perpendicular to the page). But there is no need to use the tech-
niques in the appendix to see this, because in this new basis it is clear by symmetry
that the integral | x1x; is zero; for every x; in the integral, there isa —xj. Andx3 =z
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is identically zero, which makes all the other off-diagonal terms in I also equal to
zero. Therefore, since I is diagonal in this new basis, these basis vectors are the
principal axes.

Furthermore, it is intuitively clear that the square will be happy to rotate around
any one of these axes indefinitely. During such a rotation, the pivot will certainly be
applying a force (if the axis is @1 or z, but not if it is @), to produce the centripetal
acceleration of the CM in its circular motion. But it won’t be applying a torque relative
to the origin (because the r in r x F is 0). This is good, because for a rotation around
one of these principal axes, dL/dt = 0, so there is no need for any torque.

In contrast with the off-diagonal zeros in the new basis, the integral [ xy in the
old basis is not zero, because every point gives a positive contribution. So the inertia
tensor is not diagonal in the old basis, which means that X and y are not principal axes.
Consistent with this, it is reasonably clear that it is impossible to make the square
rotate around, say, the x axis, assuming that its only contact with the outside world
is through a pivot (for example, a ball and socket) at the origin. The square simply
doesn’t want to remain in this circular motion. Mathematically, L (relative to the
origin) doesn’t point along the x axis, so it therefore precesses around the x axis along
with the square, tracing out the surface of a cone. This means that L is changing. But
there is no torque available (relative to the origin) to provide for this change in L.
Hence, such a rotation cannot exist.

At the moment, it is not at all obvious that an orthonormal set of principal axes
exists for an arbitrary object. But this is indeed the case, as stated in Theorem 9.4
below. Assuming for now that principal axes do exist, then in this basis the L and
T in Egs. (9.8) and (9.15) take on the particularly nice forms,

L = (o1, hw, w3),

(9.24)

1
=3 (mﬁ + ho? +13a)§).

The quantities wy, w2, and w3 here are the components of a general vector
written in the principal-axis basis; that is, @ = w1 @] + wy®) + w3®3. Equation
(9.24) is a vast simplification over the general formulas in Egs. (9.8) and (9.15).
We will therefore invariably work with principal axes in the remainder of this
chapter.

Note that the directions of the principal axes (relative to the body) depend only
on the geometry of the body. They may therefore be considered to be painted on
(or in) it. Hence, they will generally move around in space as the body rotates.
For example, if the object is rotating around a principal axis, then that axis
stays fixed while the other two principal axes rotate around it. In relations like
® = (w1,wy,w3) and L = (l w1, Lhw),, ws), the components w; and /;w; are
measured along the instantaneous principal axes ;. Since these axes change
with time, it is quite possible that the components w; and /;w; change with time,
as we’ll see in Section 9.5 (and onward).
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Let’s now state the theorem that implies that a set of principal axes does indeed
exist for any body and any origin. The proof of this theorem involves a useful
but rather slick technique, but it’s slightly off the main line of thought, so we’ll
relegate it to Appendix D. Take a look at the proof if you wish, but if you want
to just accept the fact that principal axes exist, that’s fine.

Theorem 9.4 Given a real symmetric 3 x 3 matrix, 1, there exist three
orthonormal real vectors, @y, and three real numbers, I, with the property
that

16, = Lo (9.25)
Proof: See Appendix D. [ |

Since the inertia tensor in Eq. (9.8) is indeed symmetric for any body and any
origin, this theorem says that we can always find three orthogonal basis vectors
that satisfy Eq. (9.23). Or equivalently, we can always find three orthogonal basis
vectors for which I is a diagonal matrix, as in Eq. (9.22). In other words, principal
axes always exist. Problem 9.7 gives another way to demonstrate the existence
of principal axes in the special case of a pancake object.

Invariably, it is best to work in a coordinate system that has principal axes as
its basis, due to the simplicity of Eq. (9.24). And as mentioned in Footnote 6, the
origin is generally chosen to be the CM, because from Section 8.4.3 the CM is
one of the origins for which T = dL/dt is a valid statement. But this choice is
not necessary; there are principal axes associated with any origin.

For an object with a fair amount of symmetry, the principal axes are usually
the obvious choices and can be written down by simply looking at the object
(examples are given below). If, however, you are given an unsymmetrical body,
then the only way to determine the principal axes is to pick an arbitrary basis,
then find I in this basis, and then go through a diagonalization procedure. This
diagonalization procedure basically consists of the steps at the beginning of the
proof of Theorem 9.4 (given in Appendix D), with the addition of one more step
to get the actual vectors, so we’ll relegate it to Appendix E. There’s no need
to worry much about this method. Virtually every system you encounter will
involve an object with sufficient symmetry to enable you to just write down the
principal axes.

Let’s now prove two very useful (and very similar) theorems.

Theorem 9.5 [ftwo principal moments are equal (I} = I, = I), then any axis
(through the chosen origin) in the plane of the corresponding principal axes is a
principal axis, and its moment is also 1. Similarly, if all three principal moments
are equal (Iy = I = I3 = 1), then any axis (through the chosen origin) in space
is a principal axis, and its moment is also 1.

Proof: The first part was already proved at the end of the proof'in Appendix D,
but we’ll do it again here. Since /1 = I, = I, we have Iu; = /u;, and Iuy = 7uy,
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where the u’s are the principal axes. Hence, I(au; + buy) = I(au; + buy), for
any a and b. Therefore, any linear combination of u; and u; (that is, any vector
in the plane spanned by u; and uy) is a solution to Iu = /u and is thus a principal
axis, by definition.

The proof of the second part proceeds in a similar manner. Since I} = I, =
I3 = I, we have Iu; = [uy, Iup = Jwy, and Iuy = Jusz. Hence, I(au; + buy +
cu3) = I(auj + buy + cuz). Therefore, any linear combination of uy, uy, and us
(that is, any vector in space) is a solution to Iu = /u and is thus a principal axis,
by definition.

In short, if I = I, = I, then I is the identity matrix (up to a multiple) in the
space spanned by u; and up. Andif/y = I, = I3 = I, then I is the identity matrix
(up to a multiple) in the entire space. Note that it isn’t required that the various
u; vectors be orthogonal. All we need is that they span the relevant space. W

If two or three moments are equal, so that there is freedom in choosing the
principal axes, then it is possible to pick a nonorthogonal group of them. We
will, however, always choose ones that are orthogonal. So when we say “a set of
principal axes,” we mean an orthonormal set.

Theorem 9.6 If a pancake object is symmetric under a rotation through an
angle 60 % 180° in the x-y plane (such as a hexagon), then every axis in the
x-y plane (with the origin chosen to be the center of the symmetry rotation) is a
principal axis with the same moment.

Proof: Let & be a principal axis in the plane, and let &, be the axis obtained
by rotating @ through the angle 6. Then @y is also a principal axis with the same
principal moment, due to the symmetry of the object. Therefore, Iog = I®¢, and
loy = [wy.

Now, any vector @ in the x-y plane can be written as a linear combination of
®( and @y, provided that 6 £ 180° (or zero, of course). That is, @ and @y span
the x-y plane. Therefore, any vector w can be written as w = a®o + b@y, and so

Iw = I(awy + bwy) = alwy + blwy = [w. (9.26)

Hence, w is also a principal axis. Problem 9.8 gives another proof of this
theorem. ]

The theorem actually holds even without the “pancake” restriction. That is,
it holds for any object with a rotational symmetry around the z axis (excluding
0 # 180°). This can be seen as follows. The z axis is a principal axis, because
if  points along z, then L must also point along z, by symmetry. There are
therefore (at least) two principal axes in the x-y plane. Label one of these as @¢
and proceed as above.

Let’s now do some quick examples. We’ll state the principal axes for the
objects listed below (relative to the origin). Your task is to show that they
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are correct. Usually, a quick symmetry argument shows that

[0?+22) — [xy — [zx
I= — [xy f(z2 +x?) — [yz (9.27)
—fzx —fyz f(x2+y2)

is diagonal. In all of these examples (see Fig. 9.17), the origin for the principal
axes is understood to be the origin of the given coordinate system (which is not
necessarily the CM). In describing the axes, they therefore all pass through the
origin, in addition to having the other properties stated.

Example 1: Point mass at the origin.
principal axes: any axes.

Example 2: Point mass at the point (xq, 9, z0)-
principal axes: axis through point, any axes perpendicular to this.

Example 3: Rectangle centered at the origin, as shown.
principal axes: the x, y, and z axes.

Example 4: Cylinder with axis as z axis.
y
principal axes: z axis, any axes in x-y plane.

Example 5: Square with one corner at origin, as shown.
principal axes: z axis, axis through CM, axis perpendicular to this.

9.4 Two basic types of problems

The previous three sections introduced a variety of abstract concepts. We will
now finally look at some actual physical systems. The concept of principal axes
gives us the ability to solve many kinds of problems. Two kinds, however, come
up again and again. There are variations on these, of course, but they may be
generally stated as follows.

e Strike a rigid object with an impulsive (that is, quick) blow. What is the motion of the
object immediately after the blow?

e An object rotates around a fixed axis. A given torque is applied. What is the frequency
of the rotation? Or conversely, given the frequency, what is the required torque?

We’ll work through an example for each of these problems. In both cases, the
solution involves a few standard steps, so we’ll write them out explicitly.
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9.4.1 Motion after an impulsive blow

Problem: Consider the rigid object in Fig. 9.18. Three masses are connected
by three massless rods, in the shape of an isosceles right triangle with hypotenuse
length 4a. The mass at the right angle is 2m, and the other two masses are m.
Label them 4, B, C, as shown. Assume that the object is floating freely in outer
space. Mass B is struck with a quick blow, directed into the page. Let the imparted
impulse have magnitude [ F dt = P. (See Section 8.6 for a discussion of impulse
and angular impulse.) What are the velocities of the three masses immediately
after the blow?

Solution: Our strategy will be to find the angular momentum of the system
(relative to the CM) using the angular impulse, and then calculate the principal
moments and find the angular velocity vector (which will give the velocities
relative to the CM), and then finally add on the CM motion.

The altitude from the right angle to the hypotenuse has length 24, and the CM
is easily seen to be located at its midpoint (see Fig. 9.19). Picking the CM as our
origin, and letting the plane of the paper be the x-y plane, the positions of the
three masses are ry = (—2a, —a,0), rg = (2a,—a,0), and rc = (0, a,0). There
are now five standard steps that we must perform.

e Find L: The positive z axis is directed out of the page, so the impulse vector is
P= f Fdt = (0,0, —P). Therefore, the angular momentum of the system (relative to

the CM) is
L=/tdt=/(erF)dt=er/th

= (2a,—a,0) x (0,0,—P) = aP(1,2,0), (9.28)

as shown in Fig. 9.19. We have used the fact that rp is essentially constant during the
blow (because the blow is assumed to happen very quickly) in taking rp outside the
integral.

e Calculate the principal moments: The principal axes are the x, y, and z axes, because
the symmetry of the triangle makes I diagonal in this basis, as you can quickly check.
The moments (relative to the CM) are

I, = ma® + ma® + (2m)a2 = 4ma2,
Ly = mQ2a)* + mQa)® + 2m)0? = 8ma?, (9.29)
L = Iy + I, = 12ma*.
We have used the perpendicular-axis theorem to obtain /7, although it won’t be needed
to solve the problem.

e Find w: We now have two expressions for the angular momentum of the system. One
expression is in terms of the given impulse, Eq. (9.28). The other is in terms of the
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moments and the angular velocity components, Eq. (9.24). Equating these gives

(Lywy, Lywy, Lw;) = aP(1,2,0)

— (4ma2a)x, Smaza)y, 12ma2wz) =aP(1,2,0)
P
- (wx,wy,a)z) - _(17 1:0)5 (930)
4ma

as shown in Fig. 9.19.

Calculate the velocities relative to the CM: Right after the blow, the object rotates
around the CM with the angular velocity found in Eq. (9.30). The velocities relative to
the CM are then u; = @ X r;. Thus,

P
uy=wxrgy=—(1,1,0) x (=2a,—a,0) = (0,0,P/4m),
4ma
P
ug —w X rg = 4—(1, 1,0) x 2a,—a,0) = (0,0, —3P/4m), (9.31)
ma

P
ue = xre = 2= (1,1,0) x (0,a,0) = (0,0, P/4m).

As a check, it makes sense that up is three times as large as uy and uc, because B is
three times as far from the axis of rotation as 4 and C are, as you can verify by doing a
little geometry in Fig. 9.19.

Add on the velocity of the CM: The impulse (that is, the change in linear momentum)
supplied to the whole system is P = (0, 0, —P). The total mass of the system is M' = 4m.
Therefore, the velocity of the CM is

P
Vem = - = (0.0, —P/4m). (9.32)

The total velocities of the masses are therefore

vq4=uy +Vem = (0,0,0),
vg=ug+ Vem = (0,0, —P/m), (9.33)

ve =uc + Vem = (0,0,0).

REMARKS:

1. We see that masses 4 and C are instantaneously at rest immediately after the blow, and
mass B acquires all of the imparted impulse. In retrospect, this is clear. Basically, it is
possible for both 4 and C to remain at rest while B moves a tiny bit, so this is what
happens. If B moves into the page by a small distance €, then 4 and C won’t know that B
has moved, because their distances to B will change (assuming hypothetically that they
don’t move) by a distance of order only €2. If we changed the problem and added a mass
D at, say, the midpoint of the hypotenuse, then it would rot be possible for 4, C, and D
to remain at rest while B moved a tiny bit. So there would have to be some other motion
in addition to B’s. This setup is the topic of Exercise 9.38.

2. As time goes on, the system undergoes a rather complicated motion. What happens
is that the CM moves with constant velocity while the masses rotate around it in
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a messy manner. Since there are no torques acting on the system (after the initial
blow), we know that L. forever remains constant. It turns out that @ moves around
L while the masses rotate around this changing @. These matters are the subject of
Section 9.6, although in that discussion we restrict ourselves to symmetric tops, that
is, ones with two equal moments. But these issues aside, it’s good to know that
we can, without too much difficulty, determine what’s going on immediately after
the blow.

3. The object in this problem was assumed to be floating freely in space. If we instead have
an object that is pivoted at a given fixed point, then we should use this pivot as our origin.
There is then no need to perform the last step of adding on the velocity of the origin (which
was the CM, above), because this velocity is now zero. Equivalently, just consider the
pivot to be an infinite mass, which is therefore the location of the (motionless) CM. &

9.4.2 Frequency of motion due to a torque

Problem: Consider a stick of length £, mass m, and uniform mass density. The
stick is pivoted at its top end and swings around the vertical axis. Assume that
conditions have been set up so that the stick always makes an angle 6 with the
vertical, as shown in Fig. 9.20. What is the frequency, w, of this motion?

Solution: Our strategy will be to find the principal moments and then the
angular momentum of the system (in terms of w), and then find the rate of
change of L, and then calculate the torque and equate it with dL/df. We will
choose the pivot to be the origin.® Again, there are five standard steps that we
must perform.

e Calculate the principal moments: The principal axes are the axis along the stick,
along with any two orthogonal axes perpendicular to the stick. So let the x and y axes
be as shown in Fig. 9.21. The positive z axis then points out of the page. The moments
(relative to the pivot) are Iy = m£2/3, I, =0,and Iz = m£2/3 (which won’t be needed).

e Find L: The angular velocity vector points vertically (however, see the third remark
following this solution), so in the basis of the principal axes, the angular velocity vector
is @ = (wsinb, wcosH,0), where w is yet to be determined. The angular momentum
of the system (relative to the pivot) is therefore

L = (hox, Loy, Loz) = ((1/3)mwsind,0,0). (9.34)

e Find dL/dt: The vector L in Eq. (9.34) points up to the right, along the x axis (at
the instant shown in Fig. 9.21), with magnitude L = (1/3)mf?wsinf. As the stick
rotates around the vertical axis, L traces out the surface of a cone. That is, the tip of L
traces out a horizontal circle. The radius of this circle is the horizontal component of
L, which is L cos 6. The speed of the tip (which is the magnitude of dL/dft) is therefore

8 This is a better choice than the CM because this way we won’t have to worry about any messy
forces acting at the pivot when computing the torque. The task of Exercise 9.41 is to work through
the more complicated solution which has the CM as the origin.

Fig. 9.21
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(L cos B)w, because L rotates around the vertical axis with the same frequency as the
stick. So dLL/dt has magnitude

dL 1 5 5.
o = (LcosH)w = gmﬁ w”sinf cosO, (9.35)

and it points into the page.

REMARK:  With more complicated objects where [, # 0, L won’t point nicely along a
principal axis, so the length of its horizontal component (the radius of the circle that L
traces out) won’t immediately be obvious. In this case, you can either explicitly calculate
the horizontal component (see the spinning-top example in Section 9.7.5), or you can just do
things the formal way by finding the rate of change of L via the expression dL/df = @ x L,
which holds for all the same reasons that v = dr/dt = @ x r holds. In the present problem,
we obtain

dL/dt = (wsiné,wcos6,0) x ((1/3)mt?wsiné, 0,0)
= (0,0,—(1/3)mt?w? sin 6 cos ), (9.36)

in agreement with Eq. (9.35). And the direction is correct, because the negative z axis points
into the page. Note that we calculated this cross product in the principal-axis basis. Although
these axes are changing in time, they present a perfectly good set of basis vectors at any
instant. &

Calculate the torque: The torque (relative to the pivot) is due to gravity, which
effectively acts on the CM of the stick. So T = r x F has magnitude

T =rFsinf = (£/2)(mg) sin6, (9.37)

and it points into the page.
Equate T with dL/dt: The vectors dL/dt and 7 both point into the page, which is
good, because they had better point in the same direction. Equating their magnitudes

me?w?sinfcos®  mglsinf 3g
= = = . 9.38
3 2 “ =V 2t cos0 ©-38)

gives

REMARKS:

1. This frequency is slightly larger than the frequency that would arise if we instead had a
mass on the end of a massless stick of length €. From Problem 9.12, the frequency in that
case is +/g /€ cos 0. So, in some sense, a uniform stick of length £ behaves like a mass on
the end of a massless stick of length 2£/3, as far as these rotations are concerned.

2. As 8 — 1 /2, the frequency goes to oo, which makes sense. And as & — 0, it approaches
/3g/2¢, which isn’t so obvious.

3. As explained in Problem 9.1, the instantancous  is not uniquely defined in some situa-
tions. At the instant shown in Fig. 9.20, the stick is moving directly into the page. What if
someone else wants to think of the stick as (instantaneously) rotating around the @’ axis
perpendicular to the stick (the x axis, in the above notation), instead of the vertical axis,
as shown in Fig. 9.22. What is the angular speed '?

Well, if w is the angular speed of the stick around the vertical axis, then we may view
the tip of the stick as instantaneously moving in a circle of radius £sin6 around the
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vertical axis @. So w (£ sin#) is the speed of the tip of the stick. But we may also view
the tip of the stick as instantaneously moving in a circle of radius £ around ', as shown.
The speed of the tip is still w (€ sin @), so the angular speed around this axis is given by
@'t = w(£sinf). Hence @ = wsin@, which is simply the x component of @ that we
found above, right before Eq. (9.34). The moment of inertia around @’ is m€?/3, so the
angular momentum has magnitude (m¢2/3)(w sin 0), in agreement with Eq. (9.34). And
the direction is along the x axis, as it should be.

Note that although  is not uniquely defined at any instant, L = [ (r x p) dm certainly
is.” Choosing @ to point vertically, as we did in the above solution, is in some sense the
natural choice, because this @ doesn’t change with time. &

9.5 Euler’'s equations

Consider a rigid body instantaneously rotating around an axis . This @ may
change as time goes on, but all we care about for now is what it is at a given
instant. The angular momentum is given by Eq. (9.8) as L = lw, where I is the
inertia tensor, calculated with respect to a given origin and a given set of axes
(and w is written in the same basis, of course).

As usual, things are much nicer if we use the principal axes (relative to the
chosen origin) as the basis vectors of our coordinate system. Since these axes are
fixed with respect to the rotating object, they will rotate with respect to the fixed
reference frame. In this basis, L takes the nice form,

L = (hw1, hwy, ws), (9.39)

where w1, w7, and w3 are the components of @ along the principal axes. In other
words, if you take the vector L in space and project it onto the instantaneous
principal axes, then you get the components in Eq. (9.39).

On one hand, writing L in terms of the rotating principal axes allows us to
write it in the nice form of Eq. (9.39). But on the other hand, writing L in this
way makes it nontrivial to determine how it changes in time, because the principal
axes themselves are changing. However, it turns out that the benefits outweigh
the detriments, so we will invariably use the principal axes as our basis vectors.

The goal of this section is to find an expression for dL/d¢, and to then equate
this with the torque. The result will be Euler’s equations in Eq. (9.45).

Derivation of Euler’s equations

If we write L in terms of the body frame, which we’ll choose to be described
by the principal axes painted on the body, then L can change (relative to the lab
frame) due to two effects. It can change because its coordinates in the body frame
change, and it can also change because of the rotation of the body frame. To be
precise, let Lo be the vector L at a given instant. At this instant, imagine painting
the vector Ly onto the body frame, so that L then rotates with the body. The rate

% The nonuniqueness of @ arises from the fact that Iy = 0 here. If all the moments are nonzero, then
(Lx, Ly, Lz) = (Iywy, [ywy, Iz©;) uniquely determines w, given L.
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of change of L with respect to the lab frame may be written in the (identically
true) way,

dL _ d(L — Ly) n dLy

= _ . 9.40
dt dt dt ( )

The second term here is simply the rate of change of a body-fixed vector, which
we know is @ x Lo, which equals @ x L at this instant. The first term is the rate
of change of L with respect to the body frame, which we’ll denote by §L/éz.
This is what someone standing fixed on the body measures. So we end up with
C;—I;=%+wa. (9.41)

This is actually a general statement, true for any vector in any rotating frame
(we’ll derive it in another more mathematical way in Chapter 10). There was
nothing particular about L that we used in the above derivation. Also, there was
no need to restrict ourselves to principal axes. In words, what we’ve shown is
that the total change equals the change relative to the rotating frame, plus the
change of the rotating frame relative to the fixed frame. This is just the usual way
of adding velocities when one frame moves with respect to another.

Let us now make use of our choice of the principal axes as the body axes.
This will put Eq. (9.41) in a usable form. Using Eq. (9.39), we can rewrite
Eq. (9.41) as

dL d
i E(Ilwl,]2w27l3w3) + (w1, w2, w3) x (lTw1, hwy, ws).  (9.42)

The 8L /5t term does indeed equal (d/dt)(I1w1, lhwa, [3w3), because someone
in the body frame measures the components of L with respect to the principal
axes to be (/1w1, hws, [3ws3). And §L/§t is by definition the rate at which these
components change.

Equation (9.42) equates two vectors. As is true for any vector, these (equal)
vectors have an existence that is independent of the coordinate system we choose
to describe them with (Eq. (9.41) makes no reference to a coordinate system).
But since we’ve chosen an explicit frame on the right-hand side of Eq. (9.42),
we should choose the same frame for the left-hand side. We can then equate the
components on the left with the components on the right. Projecting dL/dt onto
the instantaneous principal axes, we have

dL dL dL d
=), (=).[= =— (Lo, hoy, I 9.43
((dt>1 (dr)Z (dt)3) g b Bes) ©43)

+ (w1, w2, w3) X (Lo, Lwy, ws3).

REMARK: The left-hand side looks nastier than it really is. The reason we’ve written it in
this cumbersome way is the following (this is a remark that has to be read very slowly). We
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could have written the left-hand side as (d/dt) (L1, L2, L3), but this might cause confusion as to
whether the L; refer to the components with respect to the rotating axes, or the components with
respect to the fixed set of axes that coincide with the rotating principal axes at this instant. That
is, do we project L onto the principal axes to obtain components, and then take the derivative
of these components? Or do we take the derivative of L and then project onto the principal axes
to obtain components? The latter is what we mean in Eq. (9.43)."" The way we’ve written the
left-hand side of Eq. (9.43), it’s clear that we’re taking the derivative first. We are, after all,
simply projecting Eq. (9.41) onto the principal axes. &

The time derivatives on the right-hand side of Eq. (9.43) are d(l1w)/dt =
L1, etc., because the /’s are constant. Performing the cross product and equating
the corresponding components on each side yields the three equations,

dL }
(—) =l + (3 — h)wswy,
),
dL }
(—) =haoy + (1 — B)wws, (9.44)
dr ),

dL }
<—> = Lw; + (L — L)wor.
dr )

We will now invoke the results of Section 8.4.3 to say that if we have chosen the

origin of our rotating frame to be either a fixed point or the CM (as we always
do), then we can equate dL/dt with the torque, 7. We therefore have

11 =lLo + (3 — Lh)wsw,,
7 =haoy + () — B)wws, (9.45)

13 = Loy + (L — ) wo;.

These are Euler’s equations. You need to remember only one of them, because
the other two can be obtained by cyclic permutation of the indices.

REMARKS:

1. We repeat that the left- and right-hand sides of Eqgs. (9.45) are components that are mea-
sured with respect to the instantancous principal axes. Let’s say we do a problem, for
example, where 73 has a constant nonzero value, and t; and t; are always zero (as in the
example in Section 9.4.2). This doesn’t mean that 7 is a constant vector. On the contrary,
T always points along the X3 vector in the rotating frame, but this vector is changing in
the fixed frame (unless X3 points along ).

2. The two types of terms on the right-hand sides of Egs. (9.44) are the two types of changes
that L. can undergo. L can change because its components with respect to the rotating
frame change, and L can also change because the body is rotating around w.

10 The former is L/8¢, by definition. The two interpretations certainly give different results. For
example, if instead of L. we consider a vector fixed in the body (such as the L above), then
the first interpretation gives a zero result, whereas the second interpretation gives a nonzero
result. Considering what we mean by, say, the vector (wy, @y, @3), 1 think that the more logical
interpretation of (d/dt)(L1, Ly, L3) is the first one, so it should definitely be avoided.

395



