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Longitudinal Dynamics

1-1 INTRODUCTION

To obtain the transfer function of the aircraft it is first necessary to obtain
the equations of motion for the aircraft. The equations of motion are derived
by applying Newton’s laws of motion, which relate the summation of the
external forces and moments to the linear and angular accelerations of the
system or body. To make this application, certain assumptions must be made
and an axis system defined.

The center of the axis system is, by definition, located at the center of
gravity of the aircraft. In general, the axis system is fixed to the aircraft and
rotates with it. Such a set of axes is referred to as “body axes.” It is not
necessary to use such an axis system; an axis system could be fixed, for
example, to the air mass, and the aircraft could rotate with respect to it.
However, for the purposes of this text the axis system is taken as fixed to the
aircraft.

The axis is taken with OX forward, QY out the right wing, and OZ
downward as seen by the pilot, to form a right-handed axis system (see Figure
1-2, p. 15). Most aircraft are symmetrical with reference to a vertical plane
aligned with the longitudinal axis of the aircraft. Thus, if the OX and OZ
axes lie in this plane, the products of inertia J,, and J,, are zero. This result
leads to the first assumption:

1. The axes OX and OZ lie in the plane of symmetry of the aircraft, and J,
and J,, are equal to zero. At this time, the exact direction of OX is
not specified, but in general it is not along a principal axis; hence
J,. #0.
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1.2 THE MEANING OF VELOCITIES IN A MOVING AXIS SYSTEM

Very often a student has difficulty understanding what is meant by the
velocity of a body with respect to an axis system that is moving with the body.
How can there be any relative velocity in this situation? Statements about the
velocity along the OX axis refer to the component of velocity with respect to
inertial space taken along the instantaneous direction of the OX axis. At any
instant, the aircraft has some resultant velocity vector with respect to inertial
space. This vector is resolved into the instantaneous aircraft axes to obtain
the velocity components U, V, and W. This resolution also applies to the
angular velocity. Resolve the instantaneous angular velocity vector, with
respect to inertial space, into the instantaneous direction of the OX, 0Y, and
OZ axes to obtain P, Q, and R, respectively (see Figure 1-2, p. 15). It should
be recalled that P, Q, and R are the components of the total angular velocity
of the body (aircraft) with respect to inertial space. Thus, they are the
angular velocities that would be measured by rate gyros fixed to these axes. It
should also be recalled that inertial space is that space where Newton’s laws
apply. In general, a set of axes with their origin at the center of the earth but
not rotating with the earth may be considered as an inertial coordinate
system. Thus, the earth rotates once a day with respect to such an axis

system.

1-3 DEVELOPMENT OF THE EQUATIONS OF MOTION
(CONTROLS LOCKED)

The equations of motion for the aircraft can be derived from Newton’s
second law of motion, which states that the summation of all external forces
acting on a body must be equal to the time rate of change of its momentum,
and the summation of the external moments acting on a body must be equal
to the time rate of change of its moment of momentum (angular momentum).
The time rates of change are all taken with respect to inertial space. These
laws can be expressed by two vector equations,

d
Y F= 5(»%)], (1-1)
and
dH
EM= _E_ (1'2)

1

where ], indicates the time rate of change of the vector with respect to
inertial space. Rigorously Eq. 1-1 can be applied only to a constant-mass
system. For systems with large mass variations, such as rockets, Lagrange’s
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gguatlon (§ce Chapter 11) must be used; thus the constant-mass assumption
|scqssed in t!’lf: next paragraph. Now, the external forces and moments
consist of equilibrium or steady-state forces and moments and changes in

them which cause or result in a di i
m w isturbance from this steady st
equilibrium condition. Thus, Y state of

YF=YF,+ ) AF

and
YM=3}M;+} AM (1-3)

where LF, and M, are the summations of the equilibrium forces and
moments. In the dynamic analyses to follow, the aircraft is always considered
to b? in e.quilibrium before a disturbance is introduced. Thus, I'F, and LM

are !dentlcally zero. The equilibrium forces consist of lift, drag (t)hrust ang
gravity, and the equilibrium moments consist of moments result}ng fror;1 the
lift and drag generated by the various portions of the aircraft and the thrust

Therefqre, the aircraft is initially in unaccelerated flight, and the distur:
bances in general arise from either control surface deflections or atmospheric

turbulence. iti i i
fO:mu :fnce Under these conditions, Egs. 1-1 and 1-2 can be written in the

d
ZAF=Z('"VT)]’. ‘ (1-4)
and
dH
Y AM = |, (1-5)

B.e.fore proceeding with the derivation, it is necessary to make some
additional assumptions:

2. The mass of the aircraft remains constant during any particular dynamic
afzalyszs. .Actually, there is considerable difference in the mass of an
alrcraft.wnh and without fuel, but the amount of fuel consumed during
the period of the dynamic analysis may be safely neglected.

3. The aircraft is a rigid body. Thus, any two points on or within the
airframe .remain fixed with respect to each other. This assumption
greatly simplifies the equations and is quite valid for fighter type

aircraft. The effects of aeroelastic deflection of the airframe will be
discussed in Chapter 11. '

4. The ear'th is an i{zertial reference, and unless otherwise stated the atmo-
sphere is fixed with respect to the earth. Although this assumption is
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invalid for the analysis of inertial guidance systems, it is valid for
analyzing automatic control systems for both aircraft and missiles, and
it greatly simplifies the final equations. The validity of this assumption
is based upon the fact that normally the gyros and accelerometers used
for control systems are incapable of sensing the angular velocity of the
earth or accelerations resulting from this angular velocity such as the
Coriolis acceleration.

It is now time to consider the motion of an aircraft with respect to the
carth. Equation 1-4 can be expanded to obtain ’

ZAF=m-——] (1-6)

As the mass is considered constant, and using the fourth assumption, Eq. 1-6
reduces to

dVy

EAF:m_{F]F (1-7)

It is necessary to obtain an expression for the time rate of change of the
velocity vector with respect to the earth. This process is complicated by the
fact that the velocity vector may be rotating while it is changing in magnitude.
This fact leads to the expression for the total derivative of a vector given
below (see Appendix A)

4V W\ wxV 1-8
= —_— 3 E
dt E V7_- dt @ L ( )

where 1, (dV7 /dt) is the change in the linear velocity, w is the total angular
velocity of the aircraft with respect to the earth, and X signifies the cross
product. V; and w can be written in terms of their components, so that

V,=iU+jV +kW (1-9)
and
w=iP+jQ+kR (1-10)

where i, j, and k are unit vectors along the aircraft’s X, Y, and Z axes,
respectively. Then from Eq. 1-8

W g e
1y, =iU+jV + kW (1-11)

DEVELOPMENT OF THE EQUATIONS OF MOTION (CONTROLS LOCKED) 11

and
i j Kk
oXVy=IP Q R (1-12)
u v w
Expanding,

o XV, =i(WQ ~-VR) +j(UR - WP) +k(VP - UQ) (1-13)

L AF can be written in terms of its components as follows:

Y AF=i) AF,+j) AF,+k) AF, (1-14)

Equating the components of Egs. 1-14, 1-11, and 1-13, the equations of linear
motion are obtained:

Y. AF, =m(U +WQ - VR)
Y AF,=m(V +UR - WP)
Y AF,=m(W +VP - UQ) (1-15)

To obtain the equations of angular motion, it is necessary to return to Eq.
1-5, which is repeated here:

LAM=—- , (1-16)

Before proceeding, it is necessary to obtain an expression for H. By defini-
tion, H is the angular momentum, or moment of momentum, of a revolving
body. The momentum of the element of mass dm due to the angular velocity
o will be equal to the tangential velocity of the element of mass about the
instantaneous center of rotation times dm. The tangential velocity can be
expressed by the vector cross product as follows (see Figure 1-1):

\/

tan

=wXR (1-17)

@wxr
Figure 1-1 General body with an angular velocity o about
its center of gravity.
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Then the incremental momentum resulting from this tangential velocity of
the element of mass can be expressed as

dM = (w Xr) dm (1-18)

The moment of momentum is the momentum times the lever arm, or, as a
vector equation,

dH=rX(wXr)dm (1-19)

But H = [dH over the entire mass of the aircraft. Thus
H=frx(...xr)dm (1-20)

In evaluating the triple cross product, if

o=iP +jQ +kR

and
r=ix+jy+kz
then
i §j k
oXr=|P Q R (1-21)
x y z
Expanding,
o Xr=i(zQ — yR) +j(xR - zP) +k(yP — xQ) (1-22)
Then
i J k
rX(wXr) = x y z (1-23)
z0—yR xR-—zP yP — xQ
Expanding,

rx(wXr)=i[(y?+2?)P—xyQ - xzR| +j[(z22+x?)Q— yzR— xyP|

+K[(x? + y?)R - xzP — y20| (1-24)

DEVELOPMENT OF THE EQUATIONS OF MOTION (CONTHULS LOUGRELY "

Substituting Eq. 1-24 into Eq. 1-20, it becomes
H =fi[(y2 +z2)P - xyQ — sz] dm
+ [j[(z2 +x2)Q-yzR- xyP] dm
+ fk[(x2 +y2)R— xzP - yzQ| dm (1-25)

But [(y? + z2)dm is defined to be the moment of inertia I, and [xydm is
defined to be the product of inertia J,,. The remaining integrals of Eq. 1-25
are similarly defined. By remembering from the first assumption that J,, =

J,. =0, Eq. 1-25 can be rewritten in component form as
H =PI,—RJ,,
H,=QI,
H,=RI,—- P, (1-26)

However, Eq. 1-16 indicates that the time rate of change of H is required. As
H can change in magnitude and direction, Eq. 1-16 can be written as

dH
EAM=1H7’-+wXH (1-27)

The components of 1, dH /dt are

M g _ g

dt - x xz

dHy _ s

a =7

dH, . .

— RI,— PI_, (1-28)

As the aircraft is assumed to be a rigid body of constant mass, the time rates
of change of the moments and products of inertia are zero. Now,

H H

x z

i j k
wXH=|P @ R (1-29)
H,
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Expanding,
o XH=i(QH, — RH,)+j(RH, — PH,) +k(PH,— QH,)  (1-30)
Also ¥ AM can be written as
YAM=iY AZ+jY Al +k)Y AN (1-31)

By equating components of Eqgs. 1-28, 1-30, and 1-31 and substituting for H,,
H,, and H, from Eq. 1-26, the angular equations of motion are obtained:

Y AZ=Pl -R,+0OR(I,-1,)- PQJ,,
Y A#=0I,+ PR(I,- I,)+(P>*-R?)],,
Y A#¥=RI,—PJ,,+PQ(I,— I.)+ QRJ,, (1-32)
The equations of linear motion from Eq. 1-15 are
Y AF,=m(U+WQ—-VR)
Y. AF,=m(V + UR - WP)
Y AF,=m(W + VP -UQ) (1-33)

Equations 1-32 and 1-33 are the complete equations of motion for the
aircraft. It will next be necessary to linearize the equations and expand the
left-hand sides.

Summary of Nomenclature

Linear Small Angular Angular
Axis Direction Name Velocity Displacement Velocity

ox Forward Roll U ¢ P

oy Right wing Pitch v (] Q

oz Downward Yaw w ¥ R
Axis Moment of Inertia Product of Inertia Force Moment

ox I, Jyy =0 Fy L

oy I, Jy, =0 F; &

oz I, Jx# 0 E: N
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These conclusions are based on the assumptions that:

1. OX and OZ are in the plane of symmetry.
2. The mass of the aircraft is constant.

3. The aircraft is a rigid body.

4. The earth is an inertial reference.

1-4 AIRCRAFT ATTITUDE WITH RESPECT TO THE EARTH

In order to describe the motion of the aircraft with respect to the earth or
inertial space, it is necessary to be able to specify the orientation of one axis
system with respect to another. This can be done through the use of a set of
angles called “Euler angles.” Consider an earth axis system with its origin at
the center of gravity of the aircraft and nonrotating with respect to the earth.
Let OX and OYg be in the horizontal plane, and OZ vertical and down.
OX, may be taken as north or any other fixed direction. Referring to Figure
1-2, let the following angles indicate the rotation of the XYZ axis from the

Figure 1-2 Sketch of fixed and aircraft axes.
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earth axis:

V¥ is the angle between OX and the projection of the OX axis on the
horizontal plane.

¥ is a vector along OZ,.

O is the angle between the horizontal and the OX axis measured in the
vertical plane.

O is a vector along ON, the line of nodes.

® is the angle between ON and the OY axis measured in the OYZ plane.
Note that this plane is not necessarily vertical.

® is a vector along OX.

Thus, the angles ¥, ©, and ® specify the orientation of the aircraft axis
system with respect to the earth. The positive direction of these angles is
indicated in Figure 1-2.

To transform the components of the angular velocity of the aircraft from
the earth axis to the aircraft axis system, take the components ‘i’, 9, and ¢
and project them along the OX, OY, and OZ axes to obtain

P=&—-V¥sin®
Q=0cos® + ¥cos Osind
R=—0sin® + ¥ cos O cos ® (1-34)

These equations can be solved for ®, ©, and ¥ to yield

O =Qcos® — Rsin®

&=P+Qsin®tan®+ RcosPtan® =P + ¥sin®

sin ® Rcosd)
+
cos © cos ©

¥v=0 (1-34a)

A similar transformation can be made for linear velocities. It should be
noted that @, ®, and ¥ are not orthogonal vectors. Equations 1-34a can be
integrated with respect to time, and by knowing the initial conditions, ©, &,
and ¥ can be determined; however, as the rates of change of these angles

are a function of the angles themselves, this is best done on a computer.
The components of the gravity force along the aircraft axes are along

OoX: —mgsin®
OY: mg cos ® sin ®
0Z: mg cos O cos ® (1-35)
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1-5 LINEARIZATION AND SEPARATION OF THE EQUATIONS
OF MOTION

A study of Egs. 1-32 and 1-33 shows that it takes six simultaneous nonlinear
equations of motion to completely describe the behavior of a rigid aircraft. In
this form, a solution can be obtained only by the use of analog or digital
computers or by manual numerical integration. In most cases, however, by
the use of proper assumptions the equations can be broken down into two
sets of three equations each and these linearized to obtain equations amenable
to analytic solutions of sufficient accuracy.

The six equations are first broken up into two sets of three simultaneous
equations. To accomplish this the aircraft is considered to be in straight and
level unaccelerated flight and then to be disturbed by deflection of the
elevator. This deflection applies a pitching moment about the OY axis,
causing a rotation about this axis which eventually causes a change in F, and
F,, but does not cause a rolling or yawing moment or any change in F; thus
P=R=V=0 and the LAF,, LA_#, and LA.# equations may be elimi-
nated. This leaves

Y AF,=m(U+WQ)
Y AF,=m(W -UQ) longitudinal equations for P=R=V =0
Y a#=0I,
(1-36)

An investigation of the remaining three equations, especially the . and
A equations, shows that a rolling or yawing moment excites angular veloci-
ties about all three axes; thus except for certain cases the equations cannot
be decoupled. The assumptions necessary for this decoupling will be dis-
cussed in Chapter 3 on the lateral dynamics of the aircraft, and the condition
when this separation of the equations is not valid will be discussed in Chapter
5 on inertial cross-coupling. The rest of this chapter will be devoted to the
expansion of the longitudinal equations of motion.

1-6 LONGITUDINAL EQUATIONS OF MOTION

Previously, the components of the total instantaneous values of the linear
and angular velocities resolved into the aircraft axes were designated as U, V,
W, P, Q, and R. As these values include an equilibrium value and the



