Category: Uncategorized

image_pdfimage_print
Quadrotor Dynamic Model: Propeller Gyroscopic Effect.

Quadrotor Dynamic Model: Propeller Gyroscopic Effect.

I copied the equations below from the last post, where we see we matched our Bouabdallah paper‘s equations for rotational motion. We know some propeller input is going to be a part of the applied torque. There is going to be a set of equations for linear motion too, but let’s clarify what is going on …

+ Read More

Simulation Methods: Double Integrator Example

Simulation Methods: Double Integrator Example

In the last post I focused on placing the lead zero for the roll and pitch axes based on the limit imposed by a second double-pole our plant introduces via the motor-propeller, ‘A’ term. I neglected to calculate the proportional gain required for unity-gain crossover at the frequency of maximum phase margin. I also did …

+ Read More

Quadrotor Control: State-Space Model

Quadrotor Control: State-Space Model

I covered, “PID” (Proportional-Integral-Differential) or, “classical” controller designs for the quadrotor platform in a post last fall…time flies! We really only employ the P and the D elements. The, ‘D’ is the, “lead compensator”. The proportional gain P is the last step and you can see how this design technique is performed in that post. This is …

+ Read More

Quadrotor Linear Quadratic Regulator (LQR)

Quadrotor Linear Quadratic Regulator (LQR)

Big gap since the last post where we finally got the state-space model laid down. It got us to the plant model derived by Bouabdallah and others in his paper that we’ve used as a guide from the start. The goal all along has been not only to analyze and design candidate controllers for a Quadrotor platform, but to …

+ Read More